Inorganic Chemistry Seminar: Dr. Michael Nippe, Texas A& M University

Tue, 2019-03-05 12:00 - 13:00
Speaker: 

Dr. Michael Nippe

Location: 

Carol Lynch lecture Hall

Chemistry Complex

Host: Dr. Tomson

Title & Abstract TBA

inquiries rvargas@sas.upenn.edu

Inorganic Chemistry Seminar: Dr.Linda Doerrer, Boston University

Tue, 2018-11-27 12:00 - 13:00
Speaker: 

Dr. Linda Doerrer

Location: 

Carol Lynch Lecture Hall

Chemistry Complex

Host: Dr.Schelter

Title & Abstract TBA

inquiries rvargas@sas.upenn.edu

Inorganic Chemistry Seminar: Dr. Skye Fortier, University of Texas- El Paso

Tue, 2018-10-09 12:00 - 14:00
Speaker: 

Dr. Skye Fortier

"Metastable Metal Complexes Supported by Guanidinate Ligands"

-In this talk, we describe the chemistry of "metastable" iron and titanium complexes supported by N-donor ligands.  We have synthesized a "super bulky" guanidinate that provides kinetic stabilization to reactive metal fragments.  To this end, our efforts to synthesize and isolate complexes containing Fe=O/Fe≡N functionalities are discussed.  Additionally, we detail our work with titanium supported by guanidinate and imidazolin-2-iminato ligands and describe its reduction chemistry. For example, we have synthesized electron-rich titanium complexes, that when reduced by two-electrons, give access to Ti(II) synthons.  These Ti(II) platforms are highly reducing and exhibit unique reactivity. For instance, we observe oxidative-addition of C(sp3)-H bonds which enables catalytic transfer hydrogenation of cyclic olefins.  This reactivity and more will be presented.

Location: 

Carol Lynch Lecture Hall

 Chemistry Complex

Host: Mindiola

inquiries rvargas@sas.upenn.edu

Inorganic Chemistry Seminar: Dr. Laura Gagliardi, University of Minnesota

Tue, 2019-02-12 12:00 - 13:00
Speaker: 

Dr. Laura Gagliardi

Location: 

Carol Lynch Lecture Hall

Chemistry Complex

Host: Tomson

Title & Abstract TBA

inquiries rvargas@sas.upenn.edu

RESCHEDULED: Inorganic Chemistry Seminar: Dr. Markus Ribbe, UCI

Tue, 2018-09-18 12:00 - 13:00
Speaker: 

Dr. Markus Ribble

Seminar Rescheduled 5/7/2019

 

"Nitrogenase M-Cluster Assembly:"


"Tracing the ‘9th Sulfur’ of the Nitrogenase Cofactor via a Semi-Synthetic Approach"

"The  M-cluster  is  the  active  site  of  nitrogenase  that  contains  an  8Fe-core  assembled  via coupling and rearrangement  of  two [Fe4S4]  clusters  concomitant  with  the  insertion  of  an interstitial carbon and a ‘9th  sulfur’. Combining synthetic [Fe4S4] clusters with an assembly protein template, we show that sulfite gives rise to the ‘9th sulfur’ that is incorporated in the catalytically important belt region of the cofactor after the radical SAM-dependent carbide insertion and the concurrent 8Fe-core rearrangement have already taken place. This work provides a semi-synthetic tool for strategically labeling the cofactor—including its ‘9th  S’ in the belt region—for mechanistic investigations of nitrogenase while suggesting an interesting"
"link between nitrogen fixation and sulfite detoxification in diazotrophic organisms."

Location: 

Carol Lynch Lecture Hall

Chemistry Complex

Attached Document: 

Host: Dr. Tomson

inquiries rvargas@sas.upenn.edu

Inorganic Chemistry Seminar: Dr. Smaranda Marinescu, John Hopkins

Thu, 2018-09-13 12:00 - 13:00
Speaker: 
Dr. Smaranda Marinescu
Bio-Inspired Coordination Complexes and Polymers for Energy Applications

Research in the Marinescu group focuses on fundamental research to understand, design, and synthesize novel catalytic systems essential to the development of efficient solar-to-fuel technologies. Inspired by biological systems, we innovate molecular catalysts that involve hydrogen bonding networks capable of small molecule activation, and multiple proton and electron transfers. We have shown that cobalt complexes with pendant proton relays (NH groups) act as highly efficient catalysts for the reduction of CO2 to CO, and that the presence of the pendant NH moiety is crucial for catalysis.

 

 

 

We also explore the immobilization of metal complexes to electrodes as a method to combine homogeneous and heterogeneous catalysis. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. We have shown that metal dithiolene units can be successfully integrated into one- and two-dimensional (1D/2D) frameworks. The generated coordination polymers display unique electronic properties – they catalyze with remarkable activity the electrocatalytic conversion of water into hydrogen, and their electrical conductivity is among that of the best coordination polymers. We expect the design principles discovered in these studies to have a profound impact towards the development of advanced materials and sustainable technologies.

 

Location: 

Carol Lynch Lectrue Hall

Chemistry Complex

 Host: Dr. Schelter

inquiries rvargas@sas.upenn.edu

Physical Chemistry Seminar: Dr. Sean Roberts, University of Texas-Austin

Thu, 2018-12-13 13:00 - 14:00
Speaker: 

Dr. Sean Roberts

Location: 

Carol Lynch Lectrue Hall

Chemistry Complex

Host: Dr. Anna

Title & Abstract TBA

inquiries rvargas@sas.upenn.edu

Physical Chemistry Seminar: Dr. Wei Xiong, UC San Diego

Thu, 2018-11-01 13:00 - 14:00
Speaker: 

Dr. Wei Xiong

 

Ultrafast Nonlinear IR Spectroscopy for Exotic Molecular Materials


In this seminar, I will discuss two developments in ultrafast nonlinear IR spectroscopy for exotic molecular materials: (1) 2D IR spectroscopy for molecular vibrational polaritons and (2) transient electric field induced VSFG spectroscopy for probing interfacial charge transfer. Both show the advantages of ultrafast nonlinear IR spectroscopic technique: to decipher hidden physics of exotic molecular materials. 

2D IR of Molecular Polaritons.1 Molecular vibrational polaritons, half-light, half-matter hybrid quasiparticles, are studied using ultrafast, coherent 2D IR spectroscopy. Molecular vibrational-polaritons are anticipated to produce new opportunities in the photonic and molecular phenomena. Many of these developments hinge on fundamental understanding of physical properties of molecular vibrational polaritons. Using 2D IR spectroscopy to study vibrational-polaritons, we obtained results that challenge and advance both polariton and spectroscopy fields. These results invoke new developments in theory for the spectroscopy, discover observation of new nonlinear optical effects and unexpected responses from hidden dark states. We expect these results to have significant implications in novel infrared photonic devices, lasing, molecular quantum simulation, as well as new chemistry by tailoring potential energy landscapes. 

Transient E-field induced VSFG for Direct Interfacial Charge Transfer.2 We describe direct electron-transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate, by observing the transient electric-field-induced vibrational sum frequency generation (VSFG).  We observe dynamic responses (<150 fs) where electrons are directly transferred from the Fermi level of gold to the LUMO of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a sub-ensemble of surface molecules can adopt conformations for direct electron transfer, supported by DFT calculations. This result will have implications for implementing novel direct electron transfer in energy materials.

References.

1.        Xiang, B. et al. Two-dimensional infrared spectroscopy of vibrational polaritons. Proc. Natl. Acad. Sci. 115, 4845–4850 (2018).

2.        Xiang, B., Li, Y., Pham, C. H., Paesani, F. & Xiong, W. Ultrafast Direct Electron Transfer at Organic Semiconductor and Metal Interfaces. Sci. Adv. 3, e1701508 (2017). 

 

 

Location: 

Carol Lynch Lecture Hall 

Chemistry Complex

Host: Dr. Saven

inquiries rvargas@sas.upenn.edu

Physical Chemistry Seminar: Dr. Antoine Kahn, Princeton University

Thu, 2018-11-08 13:00 - 14:00
Speaker: 

Dr. Antoine Kahn

Location: 

Carol Lynch Lecture Hall

Chemistry Complex

Host: Dr. Rappe

Title & Abstract TBA

inquiries rvargas@sas.upenn.edu

Physical Chemistry Seminar: Dr. Tom Miller, Caltech

Thu, 2018-10-18 13:00 - 14:00
Speaker: 

Dr. Tom Miller

 

 

Getting Something For Nothing:

Classical and Machine-Learning Methods for Quantum Simulation

 


 

A focus of my research is to the develop simulation methods that reveal the mechanistic details of quantum mechanical reactions that are central to biological, molecular, and heterogenous catalysis. The nature of this effort is three-fold: we work from the foundation of quantum statistical mechanics and semiclassical dynamics to develop methods that significantly expand the scope and reliability of condensed-phase quantum dynamics simulation; we develop quantum embedding and machine learning methods that improve the description of molecular interactions and electronic properties; and we apply these methods to understand complex chemical systems.

The talk will focus on recent developments [1] and applications [2] of Feynman path integral methods for the description of non-adiabatic chemical dynamics, including proton-coupled electron-transfer and long-ranged electron transfer in protein systems.  Additionally, we will describe a machine-learning approach [3] to predicting the electronic structure results on the basis of simple molecular orbitals properties, yielding striking accuracy and transferability across chemical systems at low computational cost.

 

[1] "Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics." X. Tao, P. Shushkov, and T. F. Miller III, J. Chem. Phys., 148, 102327 (2018).

 

[2] "Fluctuating hydrogen-bond networks govern anomalous electron transfer kinetics in a blue copper protein." J. S. Kretchmer, N. Boekelheide, J. J. Warren, J. R. Winkler, H. B. Gray, and T. F. Miller III, Proc. Natl. Acad. Sci. USA, 115, 6129 (2018).

 

[3] "Transferability in machine learning for electronic structure via the molecular orbital basis." M. Welborn, L. Cheng, and T. F. Miller III, J. Chem. Theory Comput., in press, DOI: 10.1021/acs.jctc.8b00636.
Location: 

Carol Lynch Lecture Hall

Chemistry Complex

Host: Dr. Subotnik

inquiries rvargas@sas.upenn.edu

Department of Chemistry

231 S. 34 Street, Philadelphia, PA 19104-6323

215.898.8317 voice | 215.573.2112 fax | web@chem.upenn.edu

Syndicate content