Organic

Virgil Percec

Photo: 
First Name: 
Virgil
Last Name: 
Percec
Official Title: 
P. Roy Vagelos Professor of Chemistry

Organic, Supramolecular and Macromolecular Chemistry

Contact Information
Office Location: 
4003 IAST, Lab: 4160 IAST
Email: 
percec@sas.upenn.edu
Phone: 
(215) 573-5527
Fax: 
(215) 573-7888
Admin Support: 
Education: 
  • B.S. 1969 Department of Organic and Macromolecular Chemistry, Polytechnic Institute of Jassy, Romania
  • Ph.D. 1976 Institute of Macromolecular Chemistry, Jassy, Romania
  • Postdoctoral July-August 1981 Hermann Staudinger Hause, University of Freiburg, Germany
  • Postdoctoral September 1981 - March 1982 Institute of Polymer Science, University of Akron, U.S.A.
Research Interests: 

Our research group is involved in the elaboration of synthetic methods, strategies and architectural concepts, as well as in the understanding of the fundamental principles that govern the rational design and synthesis of complex molecular, macromolecular, and supramolecular nonbiological systems that exhibit biological functions. Biological systems are employed as models to develop the synthetic architectural motifs and to control their self-assembly and self-organization during the creation of ordered systems. Our research strikes a balance among a diversity of interrelated disciplines, such as organic, bioorganic, macromolecular, and supramolecular synthesis and catalysis, seeking to understand, mimic, and extend Nature's solutions to the design of synthetic functional nanosystems. 

 

Hierarchical folding, supramolecular chirality, nonbiological ionic and electronic channels and nanowires, nanostructured supramolecular membranes, externally regulated drug release mechanisms, enzyme-like catalytic systems, and self-interrupted organic and macromolecular synthesis are examples of new concepts that are under investigation. Central to the capacity of biological molecules to perform critical functions is their ability to form highly organized and stable 3-D structures using a combination of molecular recognition processes. Therefore, the combinatorial libraries of synthetic building blocks required in our strategies consist of combinations of macrocyclic, dendritic, and other primary sequences that are able to fold into well-defined conformations and also contain all the information required to control and self-repair their secondary, tertiary, and quaternary structure at the same level of precision as in biological molecules. To what extent the delicate balance between the structures and functions evolved in Nature during billions of years can be transplanted to synthetic molecules is a fascinating question.

 

Towards these goals, we also develop new synthetic methods for the formation of carbon-carbon and carbon-heteroatom bonds using metal-catalyzed homo- and cross-coupling, radical, and various ionic and ion-radical reactions. Living and non-statistically self-interrupted polymerization methods are elaborated based on these organic reactions. The design of the internal structure of complex single molecules and the elucidation of the reactivity principles induced by the controlled environment confined within a single molecule or supramolecule are actively pursued. This research involves collaborations with structural and computational chemists and biochemists.

Gary A. Molander

Photo: 
First Name: 
Gary A.
Last Name: 
Molander
Official Title: 
Hirschmann-Makineni Professor of Chemistry and Department Chair
Contact Information
Office Location: 
4001 IAST
Email: 
gmolandr@sas.upenn.edu
Phone: 
(215) 573-8604
Fax: 
(215) 573-7165
Twitter: 
@molandergroup
Admin Support: 
Research Interests: 

 

The central theme of the Molander group's research is the development of new synthetic methods and their application to the synthesis of organic molecules. The group's focus is to expand and improve the Suzuki coupling reaction for organoboron compounds. Robust, air- and water-stable potassium organotrifluoroborates (R-BF3K), are employed to carry out couplings under relatively mild conditions using non-toxic components.

Greener Routes to Standard Reagents

The preparation of aryl- and heteroaryl potassium trifluoroborate and trihydroxyborate salts has been modified to take advantage of atom-economical boron sources, such as bis-boronic acid (BBA) and tetrakis(dimethylamino)diboron, which allow low catalyst loading and relatively mild reaction conditions. Reactive boronic acid species are generated, and subsequent coupling reactions with these substrates allow greener access to biaryl products.

 

 

Improving Transformations with More Robust Reagents

 

Organotrifluoroborates allow installation of functional groups within a molecule in the place of an existing carbon-boron bond. This allows one to prepare or purchase a simple, functionalized organotrifluoroborate and to elaborate the structure, drawing on the reactivity of the boron species. Some of the transformations carried out to date in this way are outlined below, highlighting the ability to install a cyclopropyl, hydroxymethyl, or nitroso functional group using potassium trifluoroborates.

 

 

Novel Reagents and Transformations

Some methods have been developed for the synthesis of novel reagents containing alkyltrifluoroborates, namely potassium aminomethyl-, hydroxymethyl-, and a-alkoxyalkyltrifluoroborates. The synthesis of these structures is outlined below with their applications in cross coupling illustrated.

Sally Mallory

Photo: 
First Name: 
Sally
Last Name: 
Mallory
Official Title: 
Senior Lecturer

Organic Chemistry

Additional Titles: 
Director, Organic Chemistry Laboratory
Research Associate, Bryn Mawr College
Contact Information
Office Location: 
443 N
Email: 
smallory@sas.upenn.edu
Phone: 
(215) 898-5429
Admin Support: 
Education: 
  • Bryn Mawr College, A.B. (1959); M.A. (1960); Ph. D. (1963)
  • Research Associate (1963-77)
  • Yale University, Lecturer (1977-80)
  • Philadelphia Organic Chemists' Club, Chairman-elect (1975-76) and Chairman (1976-77)
  • Bryn Mawr College, Visiting Research Fellow (1986- )
  • University of Pennsylvania, Provost's Award for Distinguished Teaching (1989)
  • University of Pennsylvania, Department of Chemistry, Undergraduate Advisory Board, Excellence in Teaching Award (1996-97)
  • Inter-American Photochemical Society, elected Fellow of the Society (2005)
  • University of Pennsylvania, School of Arts and Sciences, Dean's Award for Distinguished Teaching by Affiliated Faculty (2007)
  • Award for Excellence in Undergraduate Teaching in Chemical Science, American Chemical Society, Philadelphia Section (2010)
Research Interests: 

Mechanistic and synthetic organic photochemistry; NMR studies of through-space spin-spin coupling, magnetic anisotropy, substituent effects, and structural effects on spin relaxation rates.

Marisa C. Kozlowski

Photo: 
First Name: 
Marisa C.
Last Name: 
Kozlowski
Official Title: 
Professor of Chemistry

Organic and Catalysis Chemistry

Contact Information
Office Location: 
4002 IAST, Lab: 4010, 4070 IAST
Email: 
marisa@sas.upenn.edu
Phone: 
(215) 898-3048
Admin Support: 
Research Interests: 

 

The central theme of research in my laboratory is the rational design of new methods and catalysts for use in organic synthesis. As well as using traditional screening and development approaches, we employ several novel computational tools for the discovery and optimization of new reagents and catalysts. These new synthetic methods comprise the key steps in our total synthesis strategies to a variety of important pharmaceutical agents and natural products.

 

Asymmetric Oxidative C-C Bond Forming Reactions: The development of chiral catalysts for oxidative C-C bond formation is a major focus in our laboratory. In addition to the substantial potential for developing biomimetic synthetic approaches to a variety of natural products, such transformations are appealing in that C-H bonds are directly transformed to C-C bonds with an inexpensive oxidant, molecular oxygen. 

 

To this end, we developed 1,5-diaza-cis-decalin copper complexes, the catalysts of choice for the oxidative asymmetric biaryl coupling of 2-naphthol derivatives. Study of the mechanism has allowed the development of new reaction methods as well as couplings of highly functionalized 2-naphthols. With this ability, we have completed the first asymmetric synthesis of the natural product nigerone. The first total syntheses of the complex natural products cercosporin and hypocrellin have also been accomplished. These structurally novel compounds display promising photodynamic therapy profiles in cancer treatment. Future goals include exploiting the oxidative biaryl coupling method in the synthesis of chiral bisanthraquinone and naphthodianthrone natural products.

 

Reactions of α-Ketoesters and Derivatives: We have described bifunctional salen-derived catalysts that contain electronically decoupled Lewis acid and Lewis base sites. This electronic decoupling permits generation of optimally active catalysts as both the Lewis acid and Lewis base can be maximized without quenching each other. These catalysts are particularly effective for the very difficult asymmetric alkylation of α-ketoesters and α-iminoesters to yield α-hydroxy and α-amino acid adducts in enantiomerically pure form. Further studies with α-iminoesters have revealed an umpolung addition pathway allowing addition of nucleophiles to imine nitrogens. We have exploited this reactivity pattern to develop a three-component coupling that generates highly functionalized α-amino acid derivatives.

 

Computer-Aided Design of Chiral Auxiliaries and Catalysts:Diastereo- and enantioselective chemical reactions are essential components for the efficient synthesis of complex chiral targets. We have generated several computational tools to assist researchers in designing and optimizing chiral catalysts including database searching and functionality mapping. In addition, we have developed semi-empirical quantum mechanical quantitative structure selectivity (QSSR) relationships for accurate and precise enantiomeric excess predictions of chiral catalysts. In one example, we correlated the structures of various beta-amino alcohol catalysts to their enantioselectivities in the asymmetric addition of diethylzinc to benzaldehyde. With our method the selectivities of new catalysts were also calculated. Subsequent chemical synthesis and analysis of the new catalysts indicated that the model was very useful and easily distinguished catalysts of low, moderate, and high selectivity. 

Madeleine M. Joullie

Photo: 
First Name: 
Madeleine M.
Last Name: 
Joullie
Official Title: 
Professor of Chemistry

Organic Chemistry, Natural Products Chemistry, Heterocyclic Chemistry

Contact Information
Office Location: 
455 N
Email: 
mjoullie@sas.upenn.edu
Phone: 
(215) 898-3158
Admin Support: 
Education: 
  • B.Sc. Simmons College (1949)
  • M.Sc.; University of Pennsylvania (1950)
  • Ph.D. University of Pennsylvania (1953)
  • ACS Philadelphia Section Award (1972)
  • ACS Garvan Medal (1978)
  • American Cyanamid, Faculty Award (1984)
  • American Institute of Chemists, Scroll Award (1985)
  • Member of Sigma Xi, Sigma Delta Epsilon
  • Member of ACS
  • Philadelphia Organic Chemist's Club Award (1994)
  • ACS Henry Hill Award (1994)
  • Fellow of the New York Academy of Science
  • Fullbright Lecturer
  • Co-author of two books and several chapters
Research Interests: 

 

Investigations carried out in our laboratory encompass a wide range of interests in synthetic organic chemistry including heterocyclic and medicinal chemistry.

 

Current efforts are in the following areas: (1) synthesis and chemistry of five-membered heterocycles and natural products containing such units; (2) synthesis and chemistry of fungal metabolites; (3) synthesis and chemistry of cyclopeptide alkaloids; (4) synthesis of biologically important depsipeptides; (5) synthesis of novel ninhydrins; (6) synthesis of anti- angiogenic agents.

 

 

  1. Utilization of D-ribonolactone and other sugars as precursors in the synthesis of several structurally challenging molecules is currently underway in our laboratory.
  2. The synthesis of naturally occurring fungal metabolites containing a common hexasubstituted aromatic ring but different side chains such as colletochlorin D, ascofuranone and ascochlorin are another area of interest. The biological activities of those natural products range from high hypolipidemic action to anticancer and antiprotozoan activity.
  3. Cyclopeptide alkaloids are natural products found in many plant families. A broad program aimed at developing methodology for the synthesis of the most commonly found thirteen- and fourteen-membered ring cyclopeptide alkaloids is currently underway. Sanjoin, used in Chinese folk medicine is one of our targets. Other antitumor cyclic peptides provenient from plants, the astins, are also under investigation.
  4. Didemnins are a new class of depsipeptides isolated from a Carribean tunicate of the family Didemnidae, a species of the genus Trididemnum. These cyclic peptides have shown highly active antiviral and antitumor agents. The synthetic studies carried out in our laboratory have produced synthetic and spectral evidence for the absolute configuration of the asymmetric centers of the hydroxyisovalerylpropionyl (HIP) unit of the macrocycle, thereby requiring a revision of the original stereochemistry. The stereocontrolled total synthesis of these natural products has already been accomplished. The synthesis of several beta-turn mimics and constrained analogs are under investigation. Because of a broad program to develop efficient synthetic routes to the didemnins, other cyclodepsipeptides have been chosen as the next targets. The choice of these compounds was not only based on their relationship to didemnins but also on previous synthetic studies of products originating from polyketide biosynthesis, and earlier investigations of carbohydrates.
  5. Novel ninhydrins are being synthesized as reagents for the detection of amino acids.
  6. We have found that sulfated beta-cyclodextrin mimicked heparin advantageously. This effective synthetic product is of utmost importance in the control of angiogenesis and has other important applications in medicine. This recent discovery uncovers a new class of anti-angiogenic agents, consisting of a hydrophilic carrier and a hydrophobic angiostat, and offers a unique opportunity for the development of chemical technologies which will have important applications in the bio- and medical sciences. We are therefore continuing these studies with several goals in mind. We are investigating new and more effective carriers, we are designing single species that contain both the angiostat and carrier, and we are looking for new and more effective angiostats.
Selected Publications: 

 

B. Liang, et al. "Total Syntheses and Biological Investigations of Tamandarins A and B and Tamandarin A Analogs." J. Am. Chem. Soc. 2001, 123, 4469-4474.

 

D. Xiao et al. "Total Synthesis of a Conformationally Constrained Didemnin B. Analog." J. Org. Chem., 2001, 66, 2734-2742.

 

D. Ahuja et al. "Inhibition of Protein Synthesis by Didemnin B: How EF-1a Mediates Inhibition of Translocation." Biochemistry, 2000, 39, 4339-4346.

 

D. Ahuja, et al. "Inhibition of Protein Synthesis by Didemnins: Cell Potency and SAR." J. Med. Chem., 2000, 43, 4212-4218.

 

B. Liang, M.D. Vera and M.M. Joullié. "Total Synthesis of [(2S)-Hiv2] Didemnin M." J. Org. Chem., 2000, 65, 4762-4765.

 

B. Liang, P.J. Carroll and M.M. Joullié. "Progress Toward the Total Synthesis of Callipeltin A (1): Asymmetric Synthesis of (3S,4R)-3,4-Dimethylglutamine." Org. Lett. 2000, 2, 4157-4160.

 

P. Portonovo et al. "First Total Synthesis of a Fluorescent Didemnin," Tetrahedron, 2000, 56, 3687-3690.

 

B. Cao, D. Xiao, and M.M. Joullié. "Synthesis of Bicyclic Cyclopropylamines by Intramolecular Cyclopropanation of N-Allylamino Acid Dimethylamides." Org. Lett., 1999,1, 1799-1801.

Donna Huryn

Photo: 
First Name: 
Donna
Last Name: 
Huryn
Official Title: 
Adjunct Professor of Chemistry, Organic Chemistry
Contact Information
Office Location: 
528 N
Email: 
Huryn@sas.upenn.edu
Phone: 
215-746-3567
Education: 

  • B. A. Cornell University
  • Ph.D. Univeristy of Pennsylvania
  • Research Investigator, Hoffmann La Roche, Inc.
  • Director, Chemical Sciences Department, Wyeth Research
  • Scientific Advisor, Pittsburgh Center for Chemical Methodologies and Library Design (2004-present)
  • Adjunct Professor Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh (2005-present)
  • Associate Director Chemistry Core, Penn Center for Molecular Discovery (2005- present)
  • Senior Scientific Fellow, Pittsburgh Molecular Libraries Screening Center, University of Pittsburgh (2005- present)
  • Chair, Organic Topical Group, North Jersey ACS Section (1993)
  • NIH Medicinal Chemistry Study Section (1997-2000)

Research Interests: 

Identification, characterization and optimization of chemical probes of biological systems; Identification of novel agents to treat neurodegenerative diseases such as Alzheimer's Disease; Design of novel chemical libraries to probe biological systems.

Selected Publications: 

“Synthesis and Biological Evaluation of Benzodioxanyl-Piperazine as Potent Serotonin 5HT1A Antagonists: The Discovery of SRA-333,” W.E. Childers, M. Abou-Gharbia, M.G. Kelly, T.H. Andree, B.L. Harrison, G. Hornby, D.M. Huryn, L. Potesto, S.J. Rosenzweig-Lipson, J. Schmid, D.L. Smith, S.J. Sukoff, G. Zhang, L.E. Schechter, J. Med. Chem. 2005, 48, 3467-3470.

 

“Molecular-modeling Based Design, Synthesis and Activity of Substituted Piperidines as Gamma-Secretase Inhibitors,” E. Gundersen, K. Fan, K. Haas, D. Huryn, J.S. Jacobsen, A. Kreft, R. Martone, S. Mayer, J. Sonnenberg-Reines, S.-C. Sun, H. Zhou, Bioorg. Med. Chem. Lett. 2005, 15, 1891-1894.

 

“A Focused Library of Tetrahydropyrimidinones Amides via a Tandem Binginelli-Ugi Multi-Component Process,” S. Werner, D.N. Turner, M.S. Lyon, D.M. Huryn, P. Wipf, Syn. Lett. 2006, 14, 2334-2338.

 

“Screening of 5HT1A Receptor Antagonists Using Molecularly Imprinted Polymers,” N.A. O’Connor, D.A. Paisner, D. Huryn, K. J. Shea, J. Am. Chem. Soc. 2007, 129, 1680-1689.

 

“Paclitaxel C-10 Carbamates: Potential Candidates for the Treatment of Neurodegenerative Tauopathies,” C. Ballatore, E. Hyde, R.F. Dieches, V.M.-Y. Lee, J.Q. Trojanowski, D. Huryn, A.B. Smith, Bioorg. Med. Chem. Lett. 2007, 17, 3642-3646.

 

“Identification and Characterization of a Unique Thiocarbazate Cathepsin L Inhibitor,” M.C. Myers, P.S. Shah, S.L. Diamond, D.M. Huryn, A.B. Smith, Bioorg. Med. Chem. Lett. 2008, 18, 214-218.

 

“Pyrimidinone-Peptoid Hybrid Molecules with Distinct Effects on Molecular Chaperone Function and Cell Proliferation,” S.M. Wright, R.J. Chovatiya, N.E. Jameson, D.M. Turner, G. Zhu, S. Werner, D.M. Huryn, J.M. Pipas, B.W. Day, P. Wipf, J.L. Brodsky, Bioorg. Med. Chem. 2008, 16, 3291-3301.

 

“Design, Synthesis and Evaluation of Inhibitors of Cathepsin L: Exploiting a Unique Thiocarbazate Chemotype,” M.C. Myers, P.P. Shah, M.P. Beavers, A.D. Napper, S.L. Diamond, A.B. Smith, D.M. Huryn, Bioorg. Med. Chem. Lett. 2008, 18, 3636-3651.

 

“Kinetic Characterization and Molecular Docking of a Novel, Potent, and Selective Slow-Binding Inhibitor of Human Cathepsin L,” P.P. Shah, M.C. Myers, M.P. Beavers, J.E. Purvis, H. Jing, H.J. Grieser, E.R. Sharlow, A.D. Napper, D.M. Huryn, B.S. Cooperman, A.B. Smith, S.L. Diamond, Mol. Pharm. 2008, 74, 34-41.

 

“Molecular Docking of Cathepsin L Inhibitors in the Binding Site of Papain,” M.P. Beavers, M.C. Myers, P.P. Shah, J.E. Purvis, S.L. Diamond, B.S. Cooperman, D.M. Huryn, A.B. Smith, J. Chem. Inf. Model. 2008, 48, 1464-1472.

 

“Discovery of a Novel Series of Notch-Sparing γ-Secretase Inhibitors,” A. Kreft, B. Harrison, S. Aschmies, D. Atchison, D. Casebier, D. Cole, G. Diamantidis, J. Ellingboe, D. Hauze, Y. Hu, D. Huryn, M. Jin, D. Kubrak, P. Lu, J. Lundquist, C. Mann, R. Martone, W. Moore, A. Oganesian, A. Porte, D.R. Riddel, J. Sonnenberg-Reines, J.R. Stock, S.-C. Sun, E. Wagner, K. Woller, Z. Xu, H. Zhou, J.S. Jacobsen, Bioorg. Med. Chem. Lett. 2008, 18, 4232-4236.

 

“Discovery of Begacestat, a Notch-1-Sparing γ-Secretase Inhibitor for the Treatment of Alzheimer’s Disease,” S.C. Mayer, A.F. Kreft, B. Harrison, M. Abou-Gharbia, M. Antane, S. Aschmies, K. Atchison, M. Chlenov, D.C. Cole, T. Comery, G. Diamantidis, J. Ellingboe, K. Fan, R. Galante, C. Gonzales, D.M. Ho, M.E. Hoke, Y. Hu, D. Huryn, U. Jain, M. Jin, K. Kremer, D. Kubrak, M. Lin, P. Lu, R. Magolda, R. Martone, W. Moore, A. Oganesian, M.N. Pangalos, A. Porte, P. Reinhart, L. Resnick, D. R. Riddell, J. Sonnenberg-Reines, J.R. Stock, S.-C. Sun, E. Wagner, T. Wang, K. Woller, Z. Xu, M.M. Zaleska, J. Zeldis, M. Zhang, H. Zhou and J.S. Jacobsen, J. Med. Chem. 2008, 51, 7348–7351.

William P. Dailey

Photo: 
First Name: 
William P.
Last Name: 
Dailey
Official Title: 
Associate Professor of Chemistry

Organic Chemistry

Contact Information
Office Location: 
551 N, Lab: 507 N
Email: 
dailey@sas.upenn.edu
Phone: 
(215) 898-2704
Education: 

 

  • B.S. University of Connecticut (1979)
  • Ph.D. Dartmouth College (1983)
  • Postdoctoral Fellow, Yale University (1983-85)
  • Alfred P. Sloan Research Fellow (1990-94)
  • Lindback Award for Teaching Excellence (1992)
Research Interests: 

 

For many years the Dailey group has been involved in the areas of reactive intermediates, strained-ring chemistry, computational chemistry, matrix isolation, and organo-fluorine chemistry.

More recently we have turned our attention to the study of the mechanism of anesthesia. Many of the currently used inhalation anesthetics are small fluorinated molecules. One of the currently most widely used intravenous anesthetics is Propofol, a drug which allegedly contributed to the demise of Michael Jackson. Anesthetics are some of the most dangerous drugs currently used today, and their mechanism of action (both good and bad) remains largely unknown. New photoaffinity anesthetic compounds which mimic anesthetics but which can be photoactivated so that they can bind to potential molecular targets are being developed in our group. Using these compounds we are investigating the mechanism of anesthesia in collaboration with Dr. Roderick Eckenhoff's group at the School of Medicine at Penn. This collaboration was recently highlighted in C&E News.

 

Structures of several currently used anesthetics and the corresponding photoaffinity labeling analogs prepared in our laboratory.

Selected Publications: 

 

Michael A Hall, Jin Xi, Chong Lor, Shuiping Dai, Robert Pearce, William P. Dailey, Roderic G. Eckenhoff , "AziPm, photoactive analog of the intravenous general anesthetic, propofol", J. Med. Chem., 2010, 53, 5667 - 5675. 

 

Jerome Henin, William P. Dailey, Grace Brannigan, Roderic Eckenhoff, Michael L. Klein, "An Atomistic Model for Simulations of the General Anesthetic Isoflurane", J. Phys. Chem. B. 2010, 114(1), 604 - 612.

 

Roderic G. Eckenhoff, Jin Xi, Motomu Shimaoka, Aditya Bhattacharji, Manuel Covarrubias, William P. Dailey, "Azi-isoflurane, a photolabel analog of the commonly used inhaled general anesthetic, isoflurane", ACS Chemical Neuroscience, 2010, 1, 139 - 145.

 

L. Sangeetha Vedula, Grace Brannigan, Nicoleta J. Economou, Jin Xi, Michael A. Hall, Renyu Liu, Matthew J. Rossi, William P. Dailey, Kimberly C. Grasty, Michael L. Klein, Roderic G. Eckenhoff, Patrick J. Loll, "A Unitary Anesthetic Binding Site at High Resolution" J. Biol. Chem., 2009, 284, 24176-24184.

 

Jin Xi, Renyu Liu, Matthew J. Ross, Jay Yang, Patrick J. Loll, William P. Dailey, and Roderic G. Eckenhoff, "Photoactive Analogues of the Haloether Anesthetics Provide High-Resolution Features from Low-Affinity Interactions", ACS Chem. Biol., 2006, 1 , 377-384.

 

Tomas Martinu and William P. Dailey, "On the Reactivity of 1-Chloro-3-phenyldiazirines", J. Org. Chem., 2006, 71, 5012-5015.

 

Tomas Martinu and William P. Dailey, "Synthesis of Carboalkoxychloro- and Bromodiazirines", J. Org. Chem., 2004, 69, 7359-7362.

 

Roderic G. Eckenhoff, Frank Knoll, Eric P. Greenblatt, William P. Dailey " A Photolabel Mimic for the Inhaled Haloalkane Anesthetics", J. Med. Chem., 2002, 45, 1879 - 1886.

 

Dana R. Reed, Steven R. Kass, Kathleen R. Mondanaro, William P. Dailey "Formation of 1 1-Bicyclo[1.1.1]pentyl Anion and an Experimental Determination of the Acidity and C-H Bond Dissociation Energy of 3-t-Butylbicyclo[1.1.1]pentane", J. Am. Chem. Soc., 2002; 124(11); 2790-2795.

 

T. Martinu and W.P. Dailey " Facile One-Pot Preparation of 3-Chloro-2-(chloromethyl)propene and an Ab Initio Study of the Deamination Reaction of Nitrosoaziridine", J. Org. Chem. 2000, 65(20); 6784-6786.

 

T. Hirayama et al. "Responsive-to-Antagonist, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis", Cell 1999, 97, 383-393.

 

D. L. S. Brahms and W. P. Dailey "Fluorinated Carbenes", Chem. Rev. 1996, 96, 1585-1632.

 

T. D. Golobish and W. P. Dailey "Synthesis and Structure of Bishomohexaprismanedione", Tetrahedron Lett. 1996, 37, 3239 - 3242.

 

D. L. S. Yokotsuji et al. "Generation, Direct Observation under Matrix-isolation Conditions and Ab Initio Calculations for 2-Azacyclopenta-2, 4-dien-1-one", J. Phys. Chem. 1995, 99, 15870 - 15873 .

 

C. A. Jacobs, J. C. Brahms, W. P. Dailey, K. Beran and M. D. Harmony "Synthesis, Microwave Spectrum, and Ab Initio Calculations for Difluorocyclopropenone", J. Am. Chem. Soc. 1992, 114, 115-121.

 

M. A. Forman and W. P. Dailey "The Lithium Perchlorate-Diethyl Ether Rate Acceleration of the Diels-Alder Reaction: Lewis Acid Catalysis by Lithium Ion", J. Am. Chem. Soc. 1991, 113, 2761-2762.

Courses Taught: 

 

  • Chemistry 241
  • Chemistry 242
  • Chemistry 541

David M. Chenoweth

Photo: 
First Name: 
David M.
Last Name: 
Chenoweth
Official Title: 
Associate Professor of Chemistry

Organic and Bioorganic Chemistry

Contact Information
Office Location: 
2002 IAST, lab: 2020,2080,2100 IAST
Email: 
dcheno@sas.upenn.edu
Phone: 
215-­573-­1953
Admin Support: 
Education: 
  • B.S. Indiana University-Purdue University Indianapolis (1999)
  • Organic Chemist, Eli Lilly & Co., Indianapolis, IN (2000 – 2004)
  • Ph.D. California Institute of Technology (2009)
  • Kanel Foundation Predoctoral Fellow (2007 – 2009)
  • Caltech Herbert Newby McCoy Award (2009)
  • NIH/NIGMS Postdoctoral Fellow, Massachusetts Institute of Technology (2009 – 2010)
Research Interests: 

Research in the Chenoweth laboratory is grounded in organic chemistry and molecular recognition with applications to biological and materials problems. We synthesize molecules and study their properties and interactions for a broad range of applications in bioorganic and materials chemistry. We are particularly interested in the design and synthesis of new molecules that can modulate nucleic acid and protein structure. Additionally, we are equally interested in the synthesis of new materials with sensing and self-assembly properties.

 

Undergraduate students, graduate students, and postdoctoral researchers are exposed to a diverse array of topics including organic chemistry, synthesis, bioorganic chemistry, macromolecular structure (nucleic acids and proteins), biochemistry, and polymer chemistry.

Selected Publications: 

Zhang, Yitao; Malamakal, Roy M.; Chenoweth, David M. “Aza-Glycine Induces Collagen Hyperstability” J. Am. Chem. Soc. 2015, ASAP. DOI: 10.1021/jacs.5b04590. See Chemical & Engineering News story by Stu Borman: “Chemical Modification Is Best Ever At Strengthening And Stabilizing Collagen” Chemical & Engineering News, Volume 93, Issue 38, p. 7, News of The Week.

 

Zhang, Yitao; Malamakal, Roy M.; Chenoweth, David M. “A Single Stereodynamic Center Modulates the Rate of Self-Assembly in a Biomolecular System” Angew. Chem. Int. Ed. 2015, 54, 10826-10832.

 

Suh, Sung-Eun; Barros, Stephanie A.; Chenoweth, David M. “Triple Aryne–Tetrazine Reaction Enabling Rapid Access to a New Class of Polyaromatic Heterocycles” Chemical Science 2015, 6, 5128-5132.

 

Tran, Mai N.; Chenoweth, David M. “Synthesis and Properties of Lysosome-Specific Photoactivatable Probes for Live-Cell Imaging” Chemical Science 2015, 6, 4508-4512.

 

Barros, Stephanie A.; Chenoweth, David M. “Triptycene-Based Small Molecules Modulate (CAG)·(CTG) Repeat Junctions" Chemical Science 2015, 6, 4752-4755.

 

Tran, Mai N.; Chenoweth, David M. “Photoelectrocyclization as an Activation Mechanism for Organelle Specific Live-Cell Imaging Probes” Angew. Chem. Int. Ed. 2015, 54, 6442-6446.

 

Ballister, Edward R.; Ayloo, Swathi; Chenoweth, David M.; Lampson, Michael A.; Holzbaur, Erika L.F. “Optogenetic Control of Organelle Transport Using a Photocaged Chemical Inducer of Dimerization” Current Biology 2015, 10, R407-R408.

 

Ballister, Edward R.; Aonbangkhen, Chanat; Mayo, Alyssa M.; Lampson, Michael A.; Chenoweth, David M. "Localized Light-Induced Protein Dimerization in Living Cells using a Photocaged Dimerizer” Nature Communications 2014, 5, 5475.

 

Barros, Stephanie A.; Chenoweth, David M. "Recognition of Nucleic Acid Junctions Using Triptycene-Based Molecules” Angew. Chem. Int. Ed. 2014, 53, 13746-13750.

 

Rarig, Robert-André F.; Tran, Mai N.; Chenoweth, David M. "Synthesis and Conformational Dynamics of the Reported Structure of Xylopyridine A” J. Am. Chem. Soc. 2013, 135, 9213–9219, ASAP.

 

Chenoweth, David M.; Meier, Jordan L.; Dervan, Peter B. "Pyrrole-Imidazole Polyamides Distinguish Between Double-Helical DNA and RNA” Angew. Chem. Int. Ed. 2013, 52, 415-418.

 

Weizmann, Yossi; Chenoweth, David M.; Swager, Timothy, M. "DNA−CNT Nanowire Networks for DNA Detection” J. Am. Chem. Soc. 2011, 133, 3238–3241.

 

Chenoweth, David M.; Dervan, Peter B. “Structural Basis for Cyclic Py-Im Polyamide Allosteric Inhibition of Nuclear Receptor Binding” J. Am. Chem. Soc. 2010, 132, 14521. Selected for the cover of JACS Oct. 20, 2010, Vol 132, Issue 41. Covered by Chemical and Engineering News Sept. 27, 2010 issue, “Putting DNA in a Bind”.

 

Weizmann, Yossi; Chenoweth, David M.; Swager, Timothy, M. “Addressable Terminally-Linked DNA-CNT Nanowires” J. Am. Chem. Soc. 2010, 132, 14009.

 

Weizmann, Yossi; Lim, Jeewoo; Chenoweth, David M.; Swager, Timothy, M. “Regiospecific Synthesis of Au-Nanorod/SWCNT/Au-Nanorod Heterojunctions” Nano Lett. 2010, 10, 2466.

 

Chenoweth, Kimberly; Chenoweth, David M.; Goddard III, William A. “Cyclooctyne-based Reagents for Uncatalyzed Click Chemistry: A Computational Survey” Org. Biomol. Chem. 2009, 7, 5255.

 

Chenoweth, David M.; Harki, Daniel A.; Dervan, Peter B. “Oligomerization Route to DNA Binding Py-Im Polyamide Macrocycles” Org. Lett. 2009, 11, 3590.

 

Chenoweth, David M.; Dervan, Peter B. “Allosteric Modulation of DNA by Small Molecules” Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13175. Covered by Nature News: "Get into the groove" Nature 2009, 460, 669. Also selected by the Stanford Synchrotron (SSRL) as a science highlight for November 2009.

 

Chenoweth, David M.; Harki, Daniel A.; Dervan, Peter B. “Solution-Phase Synthesis of Pyrrole-Imidazole Polyamides” J. Am. Chem. Soc. 2009, 131, 7175.

 

Chenoweth, David M.; Harki, Daniel A.; Phillips, John W.; Dose, Christian; Dervan, Peter B. “Cyclic Pyrrole-Imidazole Polyamides Targeted to the Androgen Response Element” J. Am. Chem. Soc. 2009, 131, 7182.

 

Chenoweth, David M.; Chenoweth, Kimberly; Goddard III, William A. “Lancifodilactone G: Insights about an Unusually Stable Enol” J. Org. Chem., 2008, 73, 6853.

 

Dose, Christian; Farkas, Michelle E.; Chenoweth, David M.; Dervan, Peter B. “Next Generation Hairpin Polyamides with (R)-3,4-Diaminobutyric Acid Turn Unit” J. Am. Chem. Soc., 2008, 130, 6859.

 

Chenoweth, David M.; Viger, Anne; Dervan, Peter B. “Fluorescent Sequence-Specific dsDNA Binding Oligomers” J. Am. Chem. Soc., 2007, 129, 2216. Covered by Chemical and Engineering News.

 

Chenoweth, David M.; Poposki, Julie A.; Marques, Michael A.; Dervan, Peter B. “Programmable oligomers targeting 5'-GGGG-3' in the minor groove of DNA and NF-k B binding inhibition” Bioorg. Med. Chem., 2007, 15, 759.

 

Doss, Raymond M.; Marques, Michael M.; Foister, Shane; Chenoweth, David M.; Dervan, Peter B. “Programmable Oligomers for Minor Groove DNA Recognition” J. Am. Chem. Soc., 2006, 128, 9074.

 

Nurok, D.; Frost, M. C.; Chenoweth, D. M. “Separation using planar chromatography with electroosmotic flow” J. Chromatogr., A, 2000, 903, 211. 

 

Nurok, David; Frost, Megan C.; Pritchard, Cary L.; Chenoweth, David M. “The performance of planar chromatography using electroosmotic flow” J. Planar Chromatogr.-Mod. TLC, 1998, 11, 244.

Department of Chemistry

231 S. 34 Street, Philadelphia, PA 19104-6323

215.898.8317 voice | 215.573.2112 fax | web@chem.upenn.edu

Syndicate content