Emeritus Faculty

William Brennen

Photo: 
First Name: 
William
Last Name: 
Brennen
Official Title: 
Emeritus Professor of Chemistry
Contact Information
Office Location: 
Senior Faculty Suite
Email: 
brennen2@sas.upenn.edu

Hendrik Hameka

Photo: 
First Name: 
Hendrik
Last Name: 
Hameka
Official Title: 
Emeritus Professor of Chemistry

Physical Chemistry

Contact Information
Office Location: 
Senior Faculty Suite
Email: 
hameka@sas.upenn.edu

Bradford B. Wayland

Photo: 
First Name: 
Bradford B.
Last Name: 
Wayland
Official Title: 
Emeritus Professor of Chemistry

Inorganic Chemistry

Contact Information
Office Location: 
Senior Faculty Suite
Email: 
wayland@sas.upenn.edu
Research Interests: 

Metallo-radical and organo-metal substrate reactions are used in both obtaining living radical polymerization for application in block copoymer materials and energy relevant small molecule organometallic transformations.

Our NSF supported polymer program spans areas from transition metal catalyst development and block co-polymer synthesis to materials applications of nano-structured polymer arrays in membranes, sensors, and microelectronic devices. The reactivity of metal-centered radical species and organometallic derivatives are exploited in the control of radical polymerization by catalytic chain transfer and living radical polymerization. Organo-cobalt porphyrin complexes have recently been observed to mediate a highly precise living radical polymerization of acrylate monomers to form low polydispersity homopolymers and block co-polymers. This new approach to obtaining living radical polymerization occurs by a degenerative transfer pathway that involves rapid interchange of polymeric radicals in the polymer with polymeric units in the organo-cobalt porphyrin complexes. This pathway to obtain living radical polymerization is a transition metal form of degenerative transfer that we refer to as radical interchange polymerization (RIP). The expanding capabilities of living radical polymerization to provide new classes of materials required to advance issues that have significant technological relevance are exploited through an active collaboration with materials science and engineering .Two of the issues targeted as focal points for this collaboration are 1) membranes for water purification and 2) low dielectric thin films for advanced micro electric devices. New materials design strategies are determined for each of the central topics along with the requisite approaches for polymer synthesis, morphology, and property evaluation.

The DOE supported energy related research interests are centered on developing new strategies to accomplish thermodynamically and or kinetically challenging reactions such as methane activation and carbon monoxide reductive coupling and hydrogenation. Ligands are designed to achieve high selectivity through steric and electronic constraints on forming the transition states for substrate reactions .The primary focus is on group nine (Co, Rh, Ir) metal complexes where the importance of metallo-radicals is a recurring theme. Metallo-porphyrins, chlorophylls, and related macrocycles are prominent thermal and photocatalysts in biological systems and emerging as important catalyst materials for chemical manufacturing processes. The unique unique chemical and physical properties of metallo-porphyrins and macrocyclic complexes are used in producing thermal and photocatalytic cycles for small molecule reactions. Several important examples include hydrogenation of CO and CO2, activation of methane, oxidation of alkenes, photoreductions and alkene polymerization. Tethered diporphyrin ligands have been designed and synthesized that are used in forming bimetalloradical complexes of Rh(II). Bimetalloradicals provide preorganization of transition states that involve two metalloradicals and give rapid highly selective substrate reactions. Structural, kinetic-mechanistic, thermodynamic, and reactivity studies are used in characterizing intermediates, anticipating new types of reactions, and guiding strategies to produce selective catalyst materials.

Other Affiliations: 

Temple University, Department of Chemistry

Donald Voet

Photo: 
First Name: 
Donald
Last Name: 
Voet
Official Title: 
Emeritus Associate Professor of Chemistry

Biological Chemistry

Contact Information
Office Location: 
349 N
Email: 
voet@sas.upenn.edu
Phone: 
(215) 898-6457
Education: 
  • B.S. California Institute of Technology (1960)
  • Ph.D. Harvard University (1967)
  • Post Doc at MIT, Cambridge, MA, 1966–1969 in the laboratory of Alexander Rich
  • Member ACS and AAAS
  • Visiting Scholar, Weizmann Institute of Science, Rehovot, Israel, 1993 and 1998
  • Editor-in-Chief, Biochemical and Molecular Biology Education.
Research Interests: 

We are studying the structures of biologically interesting molecules by X-ray crystallography in an effort to understand their structure-function relationships. Current projects include:

 

Yeast inorganic pyrophosphatase

Pyrophosphatases are essential enzymes that catalyze the hydrolysis of inorganic pyrophosphate to phosphate and, in doing so, drive the many biosynthetic reactions that yield pyrophosphate (e.g., polypeptide and polynucleotide synthesis) to completion. We have determined the refined 2.7-angstrom resolution structure of yeast inorganic pyrophosphatase, a dimeric enzyme of identical 286-residue subunits. We are presently determining the X-ray structures of selected mutant forms of this enzyme, both alone and in complex with inhibitors of this enzyme. The results of these studies, when correlated with the enzymological characteristics of the mutant enzymes, should lead to the formulation of a catalytic mechanism of inorganic pyrophosphatases as well as a greater understanding of biological phosphoryl transfer reactions in general.

 

Granulocyte -macrophage colony-stimulating factor (GM-CSF)

GM-CSF is a protein growth factor (cytokine) that stimulate the differentiation, proliferation, and activation of white blood cells known as granulocytes and macrophages. The therapeutic use of GM-CSF therefore holds considerable promise for the treatment of immunosuppressive conditions such as AIDS and the consequences of cancer chemotherapy. Indeed, GM-CSF is presently in clinical use to facilitate bone marrow transplantation. We have determined the refined X-ray structure of human GM-CSF to 3.0-angstrom resolution. We plan to determine the X-ray structures of selected mutant varieties of human GM-CSF in an effort to understand how GM-CSF interacts with its cell surface receptor. We also intend to determine the X-ray structure of the human GM-CSF receptor, both alone and in complex with GM-CSF. 

 

 

The x-ray structure of yeast inorganic pyrophosphatase. A 286-residue monomer unit of this homodimeric enzyme is shown with its polypeptide backbone represented in ribbon form embedded in its solvent accessible surface. The side chains of its active site residues are shown in ball-and-stick form.

Selected Publications: 

Voet , Voet; Biochemistry, 3rd Edition Student Companion Site

 

Michael R. Topp

Photo: 
First Name: 
Michael R.
Last Name: 
Topp
Official Title: 
Professor of Chemistry

Physical Chemistry 

Contact Information
Office Location: 
249 N, Lab: 240 N
Email: 
mrt@sas.upenn.edu
Phone: 
(215) 898-4859
Admin Support: 
Education: 
  • B.Sc. Sheffield University (1966) - Haworth Medal winner
  • Ph.D. University College London and the Royal Institution of Great Britain (1969)
  • Member of Technical Staff, Bell Labs, (1969-71)
  • IBM Research Fellow, Pembroke College, Oxford (1971-73)
Research Interests: 

Conformational Relaxation in Isolated Molecular Clusters

When molecules become electronically excited, the rearrangement of electronic charge can precipitate many types of relaxation processes. To probe details of such events, one can employ isolated molecular clusters consisting of only a few hydrogen-bonded molecules. One particularly interesting case is the cluster involving a Coumarin 151 molecule bonded to a water dimer. Two different structures have been identified in the ground state, as shown below.

 

 

Recent experiments have shown that the species shown on the left here is unstable in the excited state, and relaxes to that shown on the right on a picosecond or nanosecond time scale depending on the available energy. This corresponds to movement of the water dimer by ~10Å from one side of the molecule to another, following and yet the activation energy is only 60 cm-1. Such conformational changes have been studied by a combination of fluorescence and infrared double resonance techniques in conjunction with ionization and mass resolution.

 

Hydrogen-Bonded Molecular Dimers

 

Hydrogen-bonded dimers present important opportunities to study short-range intermolecular interactions, including modification of the electronic structure, and corelated proton or hydrogen atom transfer. Molecules such as the dimer of 4-Amino-N-methylphthalimide, shown here, reveal dramatic changes in their infrared spectra between the ground and excited states. The simple ground-state ground-state infrared spectrum reflects the high symmetry of the ground state. On the other hand, the much more complex excited-state spectrum shows evidence for a loss of symmetry resulting from changes in the acid-base properties of NH2 and >C=O groups, which may result in proton transfer across the intermolecular hydrogen bonds. These types of strongly bonded dimers are different from many other dimer systems studied so far, because both their electronic and vibrational spectra are highly structured, despite the large increase in binding energy upon electronic excitation. Femtosecond-domain experiments are planned, to follow in real time the changes in vibrational spectra, which will provide further insights into the reasons for their complexity in the excited state.

 

 

Ultrafast Electronic Relaxation of Hydrogen-Bonded Molecules Studied by Femtosecond Pump-Probe Spectroscopy

 

Femtosecond pump-probe experiments allow us to observe the time evolution of the first events following pulsed laser excitation, including motions in the first coordination shell of a hydrogen-bonded molecule in fluid solution. New pump-probe experiments involving the detection of ultrashort-lived fluorescence have explored spectroscopic changes of aminophthalimide molecules in hydrogen-bonding solvents on a time scale more than 10 times faster than existing data for fluorescence Stokes shifts. Both fluorescence upconversion and pump-probe methods are being used to investigate ultrafast energy transfer processes in complex molecules, in collaboration with the Regional Laser and Biomedical Technology Laboratories at Penn.

Edward R. Thornton

Photo: 
First Name: 
Edward R.
Last Name: 
Thornton
Official Title: 
Emeritus Professor of Chemistry

Organic and Bioorganic Chemistry 

Contact Information
Office Location: 
Senior Faculty Suite
Email: 
ert@sas.upenn.edu
Phone: 
(215) 898-8309
Education: 
  • B.A. Syracuse University (1957)
  • Ph.D. Massachusetts Institute of Technology (1959)
  • N. I. H. Postdoctoral Fellow, M.I.T. (1959-1960)
  • N.I.H. Postdoctoral Fellow, Harvard University (1960-1961)
Research Interests: 

Research has recently focused on computational studies involving molecular interactions and selectivity, molecular architecture, and molecular recognition. Some of our most recent research has involved collaborations with Professors Ralph Hirschmann and Amos B. Smith, III (University of Pennsylvania) on electrostatic potentials as a means of understanding somatostatin receptor interactions, and with Professor Nobuo Tanaka (Kyoto Institute of Technology) on isotope effects in HPLC as a means of studying hydrophobic effects and interactions.

 

We have found substantial differences in electrostatic potential surfaces (shown in 1 and 2) between different aromatic systems such as benzene (1) vs. pyridine (2). These differences correlate nicely with binding properties of glucose-based peptidomimetics containing different aromatic substituents, and they appear to explain observed differences in binding to the somatostatin receptor.

 

We have studied the separation of hydrogen/deuterium isotopologue pairs by means of reversed-phase chromatographic separation in order to examine deuterium isotope effects on hydrophobic binding. The results (see Figure, where tr is the HPLC retention time) demonstrate that dispersion interactions in the hydrophobic phase are an important component of hydrophobic interactions.

 

We are also interested in design of extended three-dimensional structures with specific architectures and novel properties. Large molecules with architecturally complex structures and shapes, having properties designed for specific purposes, are of increasing importance in all areas of organic and bioorganic chemistry.

 

A major area of interest in our lab has been study of interactions, transition structures, and mechanisms, for example, mechanistic studies on deuterium and sulfur isotope effects, solvolysis reactions, E2 eliminations, mass spectra, electrical discharge reactions, acid-base catalysis, the Diels-Alder reaction, theory of transition state structural effects, and reactions of carbenes.

 

Previous bioorganic studies in our lab involved structures and interactions of saccharides and glycolipids utilizing 13C NMR relaxation times, hydrophobic interactions, carbene photochemical labeling of model membranes, and proteins of synaptic vesicles.

Larry G. Sneddon

Photo: 
First Name: 
Larry G.
Last Name: 
Sneddon
Official Title: 
Emeritus Professor of Chemistry

Inorganic, Energy and Materials Chemistry

Contact Information
Office Location: 
452 Chem ’73
Email: 
lsneddon@sas.upenn.edu
Phone: 
(215) 898-8632
Admin Support: 
Education: 
  • B.S. Centenary College of Louisiana (1967)
  • Ph.D. Indiana University (1971)
  • Postdoctoral Fellow, University of Virginia (1971-73)
  • Postdoctoral Fellow, Massachusetts Institute of Technology (1973-74)
Research Interests: 

 

Our research in inorganic chemistry, energy-storage and materials science includes synthetic studies in main-group, transition metal and materials chemistry along with physical and structural investigations of molecular, polymeric, and solid-state materials. Brief overviews of ongoing projects are presented in the following sections.

 

Alternative Energy Carriers: New Chemical Methods for Hydrogen Storage

 

The development of efficient methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. We are exploring the use of chemical hydrides such as ammonia borane and ammonia triborane to store and deliver large amounts of hydrogen through dehydrogenation and/or hydrolysis reactions. As depicted in the example in Figure 1, we have shown that the rate and the extent of hydrogen release from these amineboranes can be significantly increased through the use of metal catalysts, ionic liquids and/or chemical additives. We are continuing to investigate both new methods for the controlled hydrogen release from amineboranes and the development of energy-efficient methods for their regeneration from spent-fuel products.

 

Figure 1. Rhodium catalyzed hydrolysis of ammonia triborane

 

Chemical Precursors to Ultra High Temperature Aerospace Materials

The production of complex structural and electronic materials in useable forms is one of the most challenging problems of modern solid-state chemistry and materials science. Our research in this area is focused on the design, syntheses and applications of new processible molecular and/or polymeric precursors to advanced carbide, nitride and boride ceramics that allow the formation of these technologically important materials in forms that cannot be produced with conventional methods. We are especially interested in ultra high temperature materials, such as HfB2 and ZrB2 based composites, that are potentially important in hypersonic (i.e. flying faster than 5 times the speed of sound) aerospace vehicles (Figure 2). A second part of the project is focused on the formation and properties of micro- and nanostructured ceramics, including fibers, tubes and porous materials.

 

Figure 2. New chemical precursor systems for ultra high temperature hafnium-ceramics that were developed at Penn

 

Transition Metal-Promoted Reactions of Inorganic Compounds

We are developing new general, metal-catalyzed methodologies that enable the systematic, high-yield syntheses of important polyborane compounds and materials. Our goals are both to discover new types of catalytic reactions and to develop an understanding of their fundamental reaction mechanisms and controlling factors.

 

Figure 3. (Left) Metal-catalyzed synthesis of the poly(norbornenyldecaborane) polymer; and (Right) The crystallographically determined structure of a new dendritic decaborane (you can manipulate this molecule online at

 

Ionic Liquid Promoted Reactions

 

Ionic liquids have properties that make them attractive solvents for synthesis, including: negligible vapor pressures, thermal stability to elevated temperatures; the ability to dissolve a range of compounds, salts and gases, immiscibility with many hydrocarbons and/or water thus enabling two-phase reaction systems, weakly-coordinating anions and cations that provide a polar, inert reaction medium, and the ability to stabilize polar intermediates and/or transition states. While ionic liquids have been widely employed for organic synthesis, our recent work showing that decaborane olefin-hydroboration and alkyne-insertion reactions proceed in biphasic ionic-liquid/hydrocarbon solvents without the need of the catalysts required in conventional solvents, was the first demonstration of the unique activating effects of ionic liquids for polyborane syntheses. We are continuing to explore the scope of ionic liquid mediated polyborane reactions along with experimental and computational studies of the mechanisms by which these reactions occur.

 

Inorganometallic Chemistry

Because of the unusual ranges of their accessible charges and coordination geometries, polyboranes can function as versatile ligands that can stabilize transition metals in a much wider array of environments than their organic counterparts, such as the cyclopentadienide anion. We are using integrated synthetic, structural (NMR and X-ray crystallography), electrochemical, and computational (DFT/GIAO) investigations to elucidate the nature of polyborane-metal bonding. The unique properties of metallapolyborane complexes are also being exploited to design new metallocene-like complexes with chemical, optical and/or bioactivity properties of importance to solid-state and/or anticancer applications. 

 

 

Figure 4. (Left) Comparisons of the bonding modes of the cyclopentadienyl and tricarbadecaboranyl ligands; (Right) The crystallographically determined structures of new maganatricarbadecaboranyl complexes illustrating a cage-slippage reaction analogous to a cyclopentadienyl ring-slippage process

Donald D. Fitts

Photo: 
First Name: 
Donald D.
Last Name: 
Fitts
Official Title: 
Emeritus Professor of Chemistry

Physical Chemistry

Contact Information
Office Location: 
Senior Faculty Suite
Email: 
dfitts@sas.upenn.edu
Phone: 
(215) 898-8628
Education: 
  • A.B. Harvard University (1954)
  • Ph.D. Yale University (1957)
  • N.S.F. Postdoctoral Fellow, University of Amsterdam (1957-58)
  • NATO Senior Science Fellow, Imperial College, University of London (1971)
  • Academic Visitor, Oxford University (1978)
  • Associate Dean for Graduate Studies, School of Arts and Sciences (1978-82, 83-94)
  • Acting Dean, School of Arts and Sciences (1982-83)
  • Visiting Fellow, Corpus Christi College, Cambridge and Visiting Scholar, Department of Chemistry, University of Cambridge, U.K. (1996)
Research Interests: 

From a knowledge of the interactions among molecules, it is possible in principle to predict the structure and the thermodynamic properties of materials as well as the dynamics of molecular processes. The overall objective of our research program is twofold: to evaluate the potential energies of intermolecular interactions for various systems as accurately as possible and to study by means of statistical mechanics the influence of these potentials of intermolecular force on the structure and properties of macroscopic systems.

J. Kent Blasie

Photo: 
First Name: 
J. Kent
Last Name: 
Blasie
Official Title: 
Walter H. & Leonore C. Annenberg Professor in the Natural Sciences

Biological, Chemical Physics and Physical Chemistry

Contact Information
Office Location: 
2003 Vagelos, Lab: Vagelos 2170, 2190, 2210-2211, 2230-2231 and 2240
Email: 
jkblasie@sas.upenn.edu
Phone: 
(215) 898-6208
Education: 
  • B.S. University of Michigan (1964)
  • Ph.D. University of Michigan (1968)
  • USPHS Career Development Award (1971-76)
  • Guest Biophysicist, Brookhaven National Laboratory (1973-present)
  • Chairman, Department of Chemistry (1983-1986)
  • Director, Biostructures Participating Research Team, National Synchrotron Light Source, Brookhaven National Laboratory (1985-1994)
  • Executive Committee, Complex Materials Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory (1994-present)
  • Scientific Advisory Committee & Advisory Board, Spallation Neutron Source, Oak Ridge National Laboratory (1997-2006)
  • Executive Committee, Cold Neutrons in Biology and Technology Team, National Institutes of Standards and Technology (1998-2006)
  • Director, Complex Materials Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory (2001-present)
Research Interests: 

Our research program falls into two areas, namely nano-scale materials science and fundamental biophysics (or biophysical chemistry). The materials science effort is directed toward the development of novel electro-optical devices, both single particle and 2-D to 3-D ensemble based, utilizing the unique microscopic properties of designed cofactor-artificial peptide complexes. The cofactors are based primarily on extended conjugated chromophores designed to exhibit light-induced electric charge transfer over large nano-scale distances and possess minimal HOMO-LUMO bandgaps. The highly stable, artificial α-helical peptides are based on n-helix bundle structural motifs designed to vectorially incorporate the cofactor within the core of the bundle and to order the assembly of the peptide-cofactor complexes at the liquid-gas, solid-liquid or solid-gas interface. Ensembles of these complexes have potential for both photovoltaic devices applications relevant to solar energy conversion and non-linear optical device applications relevant to broad-band communications. The structures and properties of both the isolated complexes and the ensembles thereof are determined by cutting-edge techniques, including molecular dynamics simulation, synchrotron x-ray and cold neutron scattering, and polarized CW and transient spectroscopies. The biophysics effort is directed toward understanding the mechanism of volatile general anesthetic action on membrane ion channels. To better access the physical chemistry of the anesthetic-protein interaction, we are utilizing artificial membrane ion channels based on an amphiphilic 4-helix bundle motif, the hydrophilic domain designed to possess the anesthetic binding cavity and the hydrophobic domain designed as a membrane-spanning cation channel. The same techniques mentioned above are utilized to probe the nature of the anesthetic-peptide interaction and its effect on the conformation of the ion channel domain. Future work will also be directed toward understanding the mechanism of electro-mechanical coupling in the substantially more complex, natural voltage-gated ion channels under the control of the applied transmembrane electrochemical potential. These studies will employ cutting-edge time-resolved synchrotron x-ray and cold neutron scattering techniques coupled with molecular dynamics simulation, and will lead to the investigation of the effects of anesthetic binding on this mechanism. All of the work mentioned above involves both extensive collaborations with other faculty in the Department, at Penn, and elsewhere, as well as experimental work at the National Laboratories on a regular basis.

Figure Legend #1: An instantaneous configuration from a molecular dynamics simulation of the structure of an extended conjugated chromophore (a butadiyne-bridged Zn-porphyrin dimer: red/yellow) incorporated into the core of the hydrophilic domain of an amphiphilic 4-helix bundle peptide (green ribbon representation) and vectorially-oriented at the water-octane (gray-pink) interface. The time-averaged structure of the chromophore-peptide complex within a monolayer ensemble at the interface has been determined experimentally. The designed coiled-coil structure of the 4-helix bundle induces a twist in the chromophore that is key to optimizing its non-linear optical polarizability.

Figure Legend #2: Instantaneous configurations from molecular dynamics simulations of the structures of a computationally designed, model anesthetic-binding membrane ion channel vectorially-oriented at the water-octane interface (water/octane not shown; see Figure 1). The hydrophilic domain (blue ribbon representation) of the amphiphilic 4-helix bundle peptide contains the anesthetic-binding cavity with the volatile anesthetic halothane (CPK representation) in the cavity shown on the right-side, with the ion channel hydrophobic domain (red ribbon representation). The helices are relatively straight and un-coiled in the side-on view (upper), as more readily seen in the end-on view shown below. Removal of the anesthetic from the cavity is seen to induce a coiled-coil structure extending from the cavity into the ion channel hydrophobic domain, shown in the side-on and end-on views on the left side. Importantly, this anesthetic-dependent conformational change depends upon the amino acid composition of the cavity. Experimental verification of these predictions from the computational design and molecular dynamics simulations are underway.

Selected Publications: 

 

Gupta, S., Dura, J., Freites, A. Tobias, D. and Blasie, J.K. Structural characterization of the voltage sensor domain and voltage-gated K+-channel vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry. Submitted.

 

Koo, J., Park, J., Tronin, A., Zhang, R., Krishnan, V., Strzalka, J., Kuzmenko, I., Therien, M.J. and Blasie, J.K. Acentric 2-D Ensembles of D-br-A Electron-Transfer Chromophores via Vectorial Orientation within Amphiphilic n-Helix Bundle Peptides for Photovoltaic Device Applications. Langmuir, 28: (6), pp 3227-3238

http://pubs.acs.org/doi 

 

Gupta, S., Liu, J., Strzalka, J. and Blasie, J.K. (2011) Profile Structures of the VSD and KvAP Channel Vectorially-Oriented in Single Membranes at Solid-Vapor or Solid-Liquid Interfaces via X-ray Reflectivity. Phys. Rev. E. 84(3): 031911-1-15. 

http://pre.aps.org/

 

Korendovych, I., Senes, A., Kim, Y.H., Lear, J., Fry, H.C., Therien, M.J., Blasie, J.K., Walker, F.A. and DeGrado, W.F. (2010) De Novo Design and Molecular Assembly of a Transmembrane Diporphyrin-Binding Protein Complex. J. Am. Chem. Soc. Comm. 132: 15516-15518. 

http://pubs.acs.org/Volume=132

 

Gonella, G., Dai, H.-L., Fry, H. C., Therien, M. J., Krishnan, V., Tronin, A. and Blasie, J.K. (2010) Control of the Orientational Order and Nonlinear Optical Response of the "Push-Pull" Chromophore RuPZn via Specific Incorporation into Densely-Packed Monolayer Ensembles of an Amphiphilic 4-Helix Bundle Peptide: Second Harmonic Generation at High Chromophore Densities. J. Am. Chem. Soc. 132 (28): 9693–9700. 

http://pubs.acs.org/Volume=132 (28) 

 

Krishnan, V., Tronin, A., Strzalka, J., Fry, H.C., Therien, M.J. and Blasie, J.K. (2010) Control of the Orientational Order and Nonlinear Optical Response of the “Push-Pull” Chromophore RuPZn via Specific Incorporation into Densely-Packed Monolayer Ensembles of an Amphiphilic 4-Helix Bundle Peptide: Characterization of the Cofactor-Peptide Complex in Monolayer Ensembles. J. Am. Chem. Soc. 132(32):11083-11092. 

http://pubs.acs.org/Volume=132 (32) 

 

Krishnan, V., Strzalka, J., Liu, J., Liu, C., Kuzmenko, I., Gog, T. and Blasie, J.K. (2010) Interferometric Enhancement of X-ray Reflectivity from Unperturbed Langmuir Monolayers of Amphiphiles at the Liquid-Gas Interface. Phys. Rev. E 81: 021604-1-10. 

http://pre.aps.org/abstract 

 

Zou, H. Liu, J. and Blasie, J.K. (2009) Mechanism of interaction between the volatile anesthetic halothane and a model ion channel protein: III. Molecular dynamics simulation incorporating a cyano-phenylalanine spectroscopic probe. Biophys. J. 96(10) pp. 4188 – 4199.

http://biophysj/Volume96=16

 

Liu, J., Strzalka, J., Tronin, A., Johansson, J.S. and Blasie, J.K. (2009) Mechanism of interaction between the volatile anesthetic halothane and a model ion channel protein: II. Fluorescence & vibrational spectroscopy employing a cyano-phenylalanine probe. Biophys. J. 96(10) pp. 4176 – 4187.

http://biophysj/Volume96

 

Strzalka, J., Liu, J., Tronin, A., Johansson, J.S. and Blasie, J.K. (2009) Mechanism of interaction between the volatile anesthetic halothane and a model ion channel protein: I. Structural investigations via x-ray reflectivity from Langmuir monolayers. Biophys. J. 96(10) pp. 4164 – 4175.

http://biophysj/Volume96

 

Tronin, A., Krishnan, V., Strzalka, J., Kuzmenko, I., Gog, T., Fry, C., Therien, M.J. and Blasie, J.K. (2009) Portable UV-VIS spectrometer for measuring absorbance and dichroism of Langmuir monolayers. Rev. Sci. Instru. 80(3): 033102-1-7.

http://rsi.aip.org/

 

Zou, H., Therein, M.J. and Blasie, J.K. Structure & Dynamics of an Extended Conjugated NLO Chromophore within an Amphiphilic 4-Helix Bundle Peptide by Molecular Dynamics Simulation. Submitted to J. Phys. Chem. B.

 

McAllister, K.A., Zou, H., Cockran, F.V., Bender, G.M., Senes, A., Fry, C.F., Nanda, V., Keenan, P.A., Lear, J.D., Therien, M.J., Blasie, J.K, and DeGrado, W.F. Using α-Helical Coiled-Coils to Design Nanostructured Metalloporphyrin Arrays. Submitted to Angewandte Chemie.

 

Bender, G.M., Lehmann, A., Zou, H., Cheng, H., Fry, H.C., Engel, D., Therien, M.J., Blasie, J.K., Roder, H., Saven, J.G. and DeGrado, W.F. De Novo Design of a Single Chain Diphenylporphyrin Metalloprotein. J. Am. Chem. Soc. 129(35). 

http://pubs.acs.org/Volume=129

 

Zou, H., Strzalka, J. Xu, T., Tronin, A. and Blasie, J.K. (2007) 3-D Structure and Dynamics via Molecular Dynamics Simulation of a de novo Designed, Amphiphilic Heme Protein Maquette at Soft Interfaces. Phys. Chem. B 111: 1823-1833.

http://pubs.acs.org

 

Strzalka, J., Xu, T., Tronin, A., Wu, S.P., Miloradovic, I., Kuzmenko, I. Gog, T., Therien, M.J., and Blasie, J.K. (2006) Structural Studies of Amphiphilic 4-helix Bundle Peptides Incorporating Designed Extended Chromophores for Nonlinear Optical Biomolecular Materials. Nano Lett. 6(11): 2395-2405. 

http://pubs.acs.org/Volume=6

 

Xu, T., Wu, S.P., Miloradovic, I., Therien, M.J., and Blasie, J.K. (2006) Incorporation of Designed Extended Chromophores into Amphiphilic 4-helix Bundle Peptides for Nonlinear Optical Biomolecular Materials. Nano Lett. 6(11): 

http://pubs.acs.org/Volume=6(2387-2394)

 

Nordgren, C.E., Strzalka, J.W. and Blasie, J.K (2005) Structure of α-Helical Bundle Peptides Vectorially-Oriented at Soft Interfaces via Molecular Dynamics Simulations and X-ray/Neutron Scattering. Submitted to Langmuir.

 

Churbanova, I., Tronin, A., Strzalka, J.W., Gog, T., Kuzmenko, I., Johansson, J.S. and Blasie, J.K. (2006) Monolayers of a Model Anesthetic-Binding Membrane Protein: Formation, Characterization and Halothane-Binding Affinity. Biophys. J. 90: 3255-3266. 

http://www.cell.com/biophysj/Volume=90

 

Tronin, A., Xu, T. and Blasie, J.K. (2005) In situ Determination of Orientational Distributions in Langmuir Monolayers by Total Internal Reflection Fluorescence. Langmuir 21: 7760-7767.

http://dx.doi.org/

 

 

Discher, B.M., Noy, D., Strazalka, J, Ye, S., Moser, C.C., Lear, J.D., Blasie, J.K. and Dutton, P.L. (2005) Design of Amphiphilic Protein Maquettes: Controlling Assembly, Membrane Insertion, and Cofactor Interactions. Biochemistry 44:12329-12343.

http://pubs.acs.org/Volume=44

 

Ye, S., Discher, B.M., Strzalka, J.W., Xu, T., Wu, S.P., Noy, D., Kuzmenko, I., Gog, T., Therien, M.J., Dutton, P.L. and Blasie, J.K. (2005) Amphiphilic 4-Helix Bundles Designed for Light-Induced Electron Transfer Across Soft Interfaces. Nano Lett. 5(9):1658-1667.

http://dx.doi.org/

 

Ye, S., Strzalka, J., Churbanova, I.Y., Zheng, S,, Johansson, J.S. and Blasie JK. (2004) A Model Membrane Protein for Binding Volatile Anesthetics. Biophys. J. 87: 4065-4074.

http://www.cell.com/biophysj/Volume=87

 

Strzalka, J. DiMasi, E., Kuzmenko, I., Gog, T. and Blasie, J.K. (2004) Resonant X-ray Reflectivity from a Bromine-Labeled Fatty-Acid Langmuir Monolayer. Phys. Rev. E 70: 051603-1-5. 

http://pre.aps.org/abstract/PRE/v70/i5/e051603

 

Strzalka, J., Kneller, L.R., Gibney, B.R., Satija, S., Majkrzak, C.F. and Blasie, J.K. (2004) Specular Neutron Reflectivity and Structure of Artificial Protein Maquettes Vectorially Oriented at Interfaces. Phys. Rev. E. E 70: 061905-1-10. 

http://pre.aps.org/abstract/PRE/v70/i6/e061905 

 

Ye, S., Discher, B.M., Strzalka, J.W., Noy, D., Zheng, S., Dutton, P.L. and Blasie, J.K. (2004) Amphiphilic 4-Helix Bundles Designed for BioMolecular Materials Applications. Langmuir 20(14): 5897-5904.

http://dx.doi.org/

 

Blasie, J.K., Strzalka, J. and Zheng, S. (2003) Solution to the Phase Problem for Specular X-ray & Neutron Reflectivity from Thin Films on Liquid Surfaces. Phys. Rev. B 67: 224201-1--224201-8.

http://prb.aps.org/

 

Ye, S., Strzalka, J., Chen, X., Moser, C.C., Dutton, P.L. and Blasie, J.K. (2003) Assembly of a Vectorially-Oriented Four-Helix Bundle at the Air/Water Interface via Directed Electrostatic Interactions. Langmuir 19(5): 1515-1521.

http://pubs.acs.org/Vol=19

 

 

Zheng, S., Strzalka, J., Jones, D.H., Opella, S.J. and Blasie, J.K. (2003) Comparative Structural Studies of Vpu Peptides in Phospholipid Monolayers by X-ray Scattering. Biophys. J. 84(4): 2393-2415.

http://www.cell.com/Vol 84 

 

Lopez, C. F., Montal, M., Blasie, J.K., Klein, M.L. and Moore, P.B. (2002) Molecular Dynamics Investigation of Membrane-Bound Bundles of the Channel Forming Transmembrane Domain of Viral Protein U from the Human Immunodeficiency Virus HIV. Biophys. J. 83(3): 1259-1267.

http://biophysj/ Volume83

 

Nordgren, E., Tobias, D.J., Klein, M.L. and Blasie, J.K. (2002) Molecular Dynamics Simulations of a Hydrated Protein Vectorially-Oriented at Hydrophobic vs. Hydrophilic Soft Surfaces. Biophys. J. 83(6): 2906-2917.

http://www.cell.com/biophysj/Volume=83

 

Tronin, A., Edwards, A.M., Wright, W.W., Vanderkooi, J.M. and Blasie, J.K. (2002) Orientational Distributions for Cytochrome c on Polar & Nonpolar Soft Surfaces by Polarized Total Internal Reflection Fluorescence. Biophys. J. 82: 996-1003.

http://www.cell.com/biophysj/Volume=82

 

Haas, A.S., Pilloud, D.L., Reddy, K.S., Babcock, G.T., Moser, C.C., Blasie, J.K. and Dutton, P.L. Cytochrome c and Cytochrome c Oxidase: Monolayer Assemblies and Catalysis. (2001) J. Phys. Chem. B 105(45): 11351-11362. 

http://pubs.acs.org/Volume=105

 

 

 

Tronin, A. and Blasie, J.K. Variable Acquisition Angle Total Internal Reflection Fluorescence – a New Technique for Orientation Distribution Studies of Ultrathin Films. (2001) Langmuir 17(No. 12): 3696-3703.

http://pubs.acs.org/Volume=17

 

Tronin, A., Strzalka, J., Chen, X., Dutton, P.L., Ocko, B.M. and Blasie, J.K. (2001) Orientational Distributions of the Di-α-Helical Synthetic Peptide ZnPPIX-BBC16 by X-ray Reflectivity and Polarized Epifluorescence. Langmuir 17(10): 3061-3066.

http://pubs.acs.org/Volume=17

 

Zheng, S., Strzalka, J., Ma, C., Opella, S.J., Ocko, B.M. and Blasie, J.K. (2001) Structural Studies of the HIV-1 Accessory Protein Vpu in Langmuir Monolayers: Synchrotron X-ray Reflectivity. Biophys. J. 80(4): 1837-1850.

http://www.cell.com/biophysj/Vol80

 

Kneller, L.R. , Edwards, A.M., Majkrzak, C.F., Berk, N.F., Krueger, S. and Blasie, J.K. (2001) Hydration State of a Single Cytochrome c Monolayer Vectorially-Oriented at a Soft Interface Investigated via Neutron Interferometry. Biophys. J. 80(5): 2248-2261.

http://www.cell.com/biophysj/s?searchTerms=&searchAuthor=&searchVol80 

 

Strzalka, J., Chen, X., Dutton, P.L. and Blasie, J.K. (2001) X-ray Scattering Studies of Maquette Peptide Monolayers II: Interferometry at the Solid/Vapor Interface. Langmuir 17(4): 1193-1199.

http://pubs.acs.org/Volume=17

 

Tronin, A., Strzalka, J., Chen, X., Dutton, P.L. and Blasie, J.K. (2000) Determination of the Porphyrin Orientation Distribution in Langmuir Monolayers by Polarized Epifluorescence. Langmuir 16(25): 9878-9886.

http://pubs.acs.org/Volume=16

 

Strzalka, J., Chen, X., Dutton, P.L., Ocko, B. M. and Blasie, J.K. (2000) X-ray Scattering Studies of Maquette Peptide Monolayers I: Reflectivity and GID at the Air/Water Interface. Langmuir 16(26): 10404-10418.

http://pubs.acs.org/Volume=16

 

A.M. Edwards, K. Zhang, C.E. Nordgren and J.K. Blasie. (2000) Heme Structure & Orientation in Single Monolayers of Cytochrome c on Polar & Nonpolar Soft Surfaces. Biophys. J. 79: 3105-3117.

http://www.cell.com/biophysj/Vol 79

 

Blasie, J.K. and Timmins, P. (1999) Neutron Scattering in Structural Biology & BioMolecular Materials in Neutron Scattering in Materials Research, eds. T. Mason and A. Taylor, MRS Bulletin 24(12): 40-47.

Department of Chemistry

231 S. 34 Street, Philadelphia, PA 19104-6323

215.898.8317 voice | 215.573.2112 fax | web@chem.upenn.edu

Syndicate content