Biological

Biological Chemistry Seminar: Douglas Cerasoli, U.S. Army

Thu, 2012-11-29 16:00
Location: 

Carolyn Hoff Lynch Room

Biological Chemistry Seminar: Elizabeth Boon, Stony Brook University

Thu, 2012-11-15 16:00
Location: 

Carolyn Hoff Lynch Room

Biological Chemistry Seminar: Emily Balskus, Harvard University

Thu, 2012-11-08 16:00
Speaker: 

Emily Balskus, Harvard University

Location: 

Carolyn Hoff Lynch Room

Donald Voet

Photo: 
First Name: 
Donald
Last Name: 
Voet
Official Title: 
Emeritus Associate Professor of Chemistry

Biological Chemistry

Contact Information
Office Location: 
349 N
Email: 
voet@sas.upenn.edu
Phone: 
(215) 898-6457
Education: 
  • B.S. California Institute of Technology (1960)
  • Ph.D. Harvard University (1967)
  • Post Doc at MIT, Cambridge, MA, 1966–1969 in the laboratory of Alexander Rich
  • Member ACS and AAAS
  • Visiting Scholar, Weizmann Institute of Science, Rehovot, Israel, 1993 and 1998
  • Editor-in-Chief, Biochemical and Molecular Biology Education.
Research Interests: 

We are studying the structures of biologically interesting molecules by X-ray crystallography in an effort to understand their structure-function relationships. Current projects include:

 

Yeast inorganic pyrophosphatase

Pyrophosphatases are essential enzymes that catalyze the hydrolysis of inorganic pyrophosphate to phosphate and, in doing so, drive the many biosynthetic reactions that yield pyrophosphate (e.g., polypeptide and polynucleotide synthesis) to completion. We have determined the refined 2.7-angstrom resolution structure of yeast inorganic pyrophosphatase, a dimeric enzyme of identical 286-residue subunits. We are presently determining the X-ray structures of selected mutant forms of this enzyme, both alone and in complex with inhibitors of this enzyme. The results of these studies, when correlated with the enzymological characteristics of the mutant enzymes, should lead to the formulation of a catalytic mechanism of inorganic pyrophosphatases as well as a greater understanding of biological phosphoryl transfer reactions in general.

 

Granulocyte -macrophage colony-stimulating factor (GM-CSF)

GM-CSF is a protein growth factor (cytokine) that stimulate the differentiation, proliferation, and activation of white blood cells known as granulocytes and macrophages. The therapeutic use of GM-CSF therefore holds considerable promise for the treatment of immunosuppressive conditions such as AIDS and the consequences of cancer chemotherapy. Indeed, GM-CSF is presently in clinical use to facilitate bone marrow transplantation. We have determined the refined X-ray structure of human GM-CSF to 3.0-angstrom resolution. We plan to determine the X-ray structures of selected mutant varieties of human GM-CSF in an effort to understand how GM-CSF interacts with its cell surface receptor. We also intend to determine the X-ray structure of the human GM-CSF receptor, both alone and in complex with GM-CSF. 

 

 

The x-ray structure of yeast inorganic pyrophosphatase. A 286-residue monomer unit of this homodimeric enzyme is shown with its polypeptide backbone represented in ribbon form embedded in its solvent accessible surface. The side chains of its active site residues are shown in ball-and-stick form.

Selected Publications: 

Voet , Voet; Biochemistry, 3rd Edition Student Companion Site

Emmanuel Skordalakes

Photo: 
First Name: 
Emmanuel
Last Name: 
Skordalakes
Official Title: 
Associate Professor, Gene Expression and Regulation Program

Biological Chemistry 

Additional Titles: 
Wistar Institute Associate Professor of Chemistry
Contact Information
Email: 
skorda@wistar.org
Phone: 
(215) 495-6884
Fax: 
(215) 573-9889
Education: 
  • 2001-2006: Postdoctoral Fellow, University of California, Berkeley
  • Ph.D.: Imperial College, University of London (2000)
  • M.Sc.: University College London (University of London) (1992)
  • B.Sc.: Anglia Ruskin University, Cambridge (1991)
Research Interests: 

 

The focus of my research lies with protein nucleic acid assemblies that participate in the replication and maintenance of eukaryotic chromosome ends, called telomeres. Telomeres protect chromosome ends from gradual length erosion, prevent end-to-end fusions and recombination, and promote proper chromosome partitioning during meiosis. Telomere length deregulation and telomerase activation are early and perhaps necessary steps in cancer cell evolution. Furthermore, telomerase and telomere dysfunction are thought to contribute to replicative senescence and programmed cell aging. Despite these fundamental roles in maintaining genome integrity and cell fate, surprisingly little is known about the molecular basis of telomere synthesis by telomerase. We are interested in elucidating the mechanism of telomere replication by telomerase and understand how telomere and telomerase binding proteins regulate telomerase activity and protect chromosome ends. The lab primarily uses structural methods coupled with biophysical and biochemical techniques to study the above systems.

Telomerase Function

Telomere replication is mediated by telomerase, an RNA dependent DNA polymerase structurally similar to retroviral reverse transcriptases and viral RNA polymerases. Biochemical studies on telomerase for more than two decades have provided a wealth of information regarding telomerase function and substrate specificity. Despite this information, the biophysical mechanisms underlying telomerase architecture and function are poorly understood. Our goal is to further elucidate the molecular basis of telomere replication by telomerase using structural and biochemical approaches. The information generated here should provide novel insights into the basic mechanisms of telomere replication and length homeostasis. It will further enrich our understanding of the mechanism of DNA replication by polymerases in general. It will provide a framework to design small molecule inhibitors of telomerase that may be of therapeutic value for cancer and other diseases associated with cellular aging.

Telomerase Regulation

In recent years, a number of factors essential for telomerase regulation and telomere maintenance have been identified. The method by which telomerase and associated regulatory factors physically interact and function with each other to maintain appropriate telomere length is poorly understood. Structural and biochemical characterization of these factors, both in isolation and in complex with one another will facilitate our understanding of how the proper function of these factors impacts telomerase function and cell proliferation.

Jeffery G. Saven

Photo: 
First Name: 
Jeffery G.
Last Name: 
Saven
Official Title: 
Professor of Chemistry

Biological and Theoretical Physical Chemistry

Contact Information
Office Location: 
266 Cret, Lab 261 Cret
Email: 
saven@sas.upenn.edu
Phone: 
215-573-6062
Fax: 
215-573-2112
Admin Support: 
Education: 
  • BA, New College of Florida
  • PhD, Columbia University & University of Wisconsin
  • NSF Postdoctoral Fellow in Chemistry, University of Illinois, Urbana-Champaign, 1993-1995. Postdoctoral Research Associate, University of Illinois, Urbana-Champaign, 1995-1997
Research Interests: 

Computationally designed protein complex containing a nonbiological cofactor, designed and studied in collaboration with the DeGrado and Therien groups in the Department of Chemistry. On the left is the computationally designed protein scaffold (magenta) and two abiotic porphyrin cofactors (yellow). On the right is a model of the computationally designed sequence and structure.

 

Our research interests involve theoretical chemistry, particularly as it applies to biopolymers, macromolecules, condensed phases, and disordered systems. We are developing computational methods for understanding and designing molecular sytems having many physical and chemical degrees of freedom. Molecular simulation techniques are used both to study molecular systems in detail and to test and illustrate our theories. 

 

A current thrust of the group involves developing computational tools for understanding the properties of protein sequences consistent with a chosen three-dimensional structure. The group works closely with experimental groups at Penn and at other universities; some group members are involved in joint theoretical/experimental projects. Recent projects involve the design of soluble and membrane bound proteins, discerning the origins of conservation in naturally occurring proteins, biomolecular simulation, and the design of nonbiological folding molecules.

E. James Petersson

Photo: 
First Name: 
E. James
Last Name: 
Petersson
Official Title: 
Associate Professor of Chemistry
Contact Information
Office Location: 
350 N
Email: 
ejpetersson@sas.upenn.edu
Phone: 
215-746-2221
Admin Support: 
Education: 

• A.B. Dartmouth College (1998)

• Ph.D. California Institute of Technology (2005)

• NIH Postdoctoral Fellow, Yale University (2005-2008)

• Searle Scholar (2010)

• Sloan Research Fellow (2012)

• NSF CAREER Award (2012)

• Award for Early Excellence in Physical Organic Chemistry      (2013)

Research Interests: 

Protein motion underlies both proper function and disease in biological systems. Many signaling and transport proteins require complex rearrangements for function, and some proteins, such as amyloids, misfold into toxic conformations. Studying these protein motions not only aids our understanding of diverse biological phenomena, it also contributes to an important fundamental problem in biochemistry: understanding how motions propagate from one end of a protein to another. The Petersson laboratory is developing tools to address questions of how dynamic proteins mediate communication and how the cellular environment catalyzes protein misfolding, from detailed in vitro folding studies to modeling protein motion in living cells. These tools include novel chromophores, which we synthesize and incorporate into proteins through unnatural amino acid mutagenesis and synthetic protein ligation.

Selected Publications: 

Inteins as Traceless Purification Tags for Unnatural Amino Acid Proteins

Batjargal, S.; Walters, C. R.; Petersson, E. J.

J. Am. Chem. Soc. 2015, 137, 1734-1737.

 

Specific Modulation of Protein Activity Through a Bioorthogonal Reaction

Warner, J. B.; Muthusamy, A. K.; Petersson, E. J.

ChemBioChem 2014, 24, 2508-2514.

 

Thioamide-Based Fluorescent Protease Sensors

Goldberg, J. M.; Chen, X. S.; Meinhardt, N.; Greenbaum, D. C.; Petersson, E. J. 

J. Am. Chem. Soc. 2014, 136, 2086-2093.

 

Efficient Synthesis and In Vivo Incorporation of Acridonylalanine, a Fluorescent Amino Acid for Lifetime and Förster Resonance Energy Transfer/Luminescence Resonance Energy Transfer Studies 

Speight, L. C.; Muthusamy, A. K.; Goldberg, J. M.; Warner, J. B.; Wissner, R. F.; Willi, T.; Woodman, B.; Mehl, R. A.; Petersson,     E. J. 

J. Am. Chem. Soc. 2013, 135, 18806-18814.

 

Expressed Protein Ligation at Methionine: N-terminal Attachment of Homocysteine, Ligation, and Masking

Tanaka, T.; Wagner, A. M.; Warner, J. B.; Wang, Y. J.; Petersson, E. J. 

Angew. Chem. Int. Ed. 2013, 52, 6210-6213.

 

Labeling Proteins with Fluorophore/Thioamide FRET Pairs by Combining Unnatural Amino Acid Mutagenesis and Native Chemical Ligation

Wissner, R. F.; Batjargal, S.; Fadzen, C. M.; Petersson, E. J. 

J. Am. Chem. Soc. 2013, 135, 6529-6540.

 

Thioamide Quenching of Fluorescent Probes Through Photoinduced Electron Transfer: Mechanistic Studies and Applications

Goldberg, J. M.; Batjargal, S.; Chen, B. S.; Petersson, E. J. 

J. Am. Chem. Soc. 2013, 135, 18651-18658.

Ronen Marmorstein

Photo: 
First Name: 
Ronen
Last Name: 
Marmorstein
Official Title: 
Professor, Department of Biochemistry and Biophysics Investigator, Abramson Family Cancer Research Institute

Biological Chemistry

Additional Titles: 
Wistar Institute Professor of Chemistry
Contact Information
Office Location: 
BRB II/III, Room 454
Email: 
marmor@mail.med.upenn.edu
Phone: 
215-898-7740
Fax: 
215-746-5511
Education: 
  • B.S. University of California at Davis (1984)
  • M.S. University of Chicago (1989)
  • Ph.D. University of Chicago (1989)
  • Postdoctoral Fellow, Harvard University (1989-1994)
Research Interests: 

The laboratory uses a broad range of molecular, biochemical and biophysical research tools centered around X-ray crystal structure determination to understand the mechanism of chromatin recognition and assembly and post-translational histone and protein modification in the regulation of gene expression; and kinase signaling pathways. The laboratory is particularly interested in gene regulatory proteins and their upstream signaling kinases that are aberrantly regulated in cancer and age-related metabolic disorders such as type II diabetes and obesity, and the use of high-throughput small molecule screening and structure-based design strategies towards the development of protein-specific small-molecule probes to be used to further interrogate protein function and for development into therapeutic agents.

Chromatin recognition and assembly and histone modification in gene regulation. DNA within the eukaryotic nucleus is compacted into chromatin containing histone proteins and its appropriate regulation orchestrates all DNA-templated reactions such as DNA transcription, replication, repair, mitosis, and apoptosis. Among the many proteins that regulate chromatin, the proteins that recognize DNA, assemble chromatin, called histone chaperones, and that modify the histones through the addition or removal of functional groups such as acetyl, methyl or phosphate play important roles. We are studying the DNA binding proteins p53, FoxO and the Gal4 family; the histone chaperones HIRA, Asf1, Vps75 and their associated factors; and the family of histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes. We are particularly interested in how DNA binding proteins navigate the recognition of their cognate DNA targets, how histone chaperones coordinate the assembly of distinct chromatin complexes correlated with different DNA regulatory processes, and how histone modification enzymes link catalysis to their substrate specific activities for their respective biological activities. More recently, we have been studying how the binding of accessory and regulatory protein subunits regulates the various activities of these proteins and in some cases we are developing small molecule protein specific inhibitors.

 

Enzymes associated with aging and age-related disorders.Sirtuin enzymes are NAD+-dependent histone and protein deactylases and/or ADP-ribotransferases that have been implicated in the regulation of gene expression, cellular aging, adipogenesis, type II diabetes and several neurodegenerative disorders. We have determined the structure of these enzymes in several liganded forms and have developed novel small molecule sirtuin inhibitors. Together with associated biochemical studies, these studies have provided insights into the mode of catalysis and substrate-specific recognition by this protein family and have illuminated new avenues for small molecule effector design. We are currently working towards understanding the factors that distinguish different sirtuin proteins and how the functions of these proteins are modulated by other protein factors. We are also pursuing structure/function studies of other proteins that are implicated in aging and age-related disorders.

 

Tumor suppressors and oncoproteins. We are carrying out biochemical and structural studies on the tumor suppressor proteins pRb, p53 and p300/CBP, both alone and in complex with their relevant protein targets. We are also interested in the mode of inactivation of these tumor suppressors by the viral oncoproteins E7 and E6 from human papillomavirus (HPV), the etiological agent for cervical cancer, and Adenovirus (Ad) E1A. We are also combining structural studies with small molecule screening to prepare small molecule HPV-E7 and for HPV-E6 inhibitors. Most recently we have begun to exploit structure-based design strategies to develop inhibitors of oncogenic kinases, such as PI3K, BRAF and PAK1 implicated in melanoma and other cancers. Our goal for these studies is to derive functional and structural information that will lead to the design of small molecule compounds that may have therapeutic applications.

Tumor suppressors and viral oncoproteins- We are pursuing biochemical and structural studies on the tumor suppressor proteins p18INK4c, pRb, p53 and p300/CBP, both alone and in complex with their relevant protein targets. The activity of pRb is inhibited by several known DNA viral oncoproteins, including human papillomavirus (HPV) E7, the etiological agent for cervical cancer, and Adenovirus (Ad) E1A. We have most recently characterized the binding properties of pRb to HPV-E7 and Ad-E1a and are now determining their structures both alone and in complex with pRb. Our goal for these studies is to derive functional and structural information that will lead to the design of small molecule compounds that may have clinical applications against cancer.

 

Protein-DNA recognition- As a model to understand sequence-specific DNA recognition by transcriptional regulatory proteins, we are studying the structure and function of three families of DNA binding proteins, the fungal specific Zn2Cys6 binuclear cluster proteins, the higher eukaryotic Ets proteins and p53. We have determined several structures of these proteins either alone or in complex with their associated DNA targets and are continuing to use these proteins as a model to understand DNA recognition by protein and protein complexes. With regard to p53, we are studying its unique mode of DNA recognition and are developing structure-based strategies for the repair of tumor-derived p53 mutations.

Other Affiliations: 

Ponzy Lu

Photo: 
First Name: 
Ponzy
Last Name: 
Lu
Official Title: 
Professor of Chemistry
Contact Information
Office Location: 
352N, Lab: 312N
Email: 
ponzy@sas.upenn.edu
Phone: 
215-898-4863
Research Interests: 

Since the lac operon has been the paradigm for gene regulatory systems, our efforts have been focused on obtaining structural information on the repressor operator complex. To this end, a series of DNA binding domain fragments and variants have been cloned and expressed for solution multinuclear multidimensional NMR analysis, both as proteins and protein DNA complexes. In collaboration with M. Lewis of the Department of Biochemistry and Biophysics, the three-dimensional structures of (1) lac repressor alone, (2) lac repressor with inducer, and (3) complexes of intact tetrametic lac repressor, and operator DNA have been solved. 

An interesting result from our group is the solution structure of A-tract DNA. This variation from the average B form has been studied for two decades. Several X-ray structures by other groups have been not consistent with the body of solution properties of this family of DNA sequences. Our NMR solution structure shows that the bend In the helix axis is actually 90 degrees away from the bend plane in the crystal structures. The variation of nucleic acid structures as a function of sequence and solvent conditions is an important consideration. In related experiments, we have exploited the use of fluorescence depolarization of bound ethidium bromide to investigate hydrodynamic size and shape of RNA structures, e.g., tetraloops and ribozymes. These issues have also become important as we are finding variations in mRNA accessibility to antisense probes.

In collaboration with the late Alan Gewirtz we demonstrated that anti-sense oligonucleotides actually find their complementary sequences in the cell.

Feng Gai

Photo: 
First Name: 
Feng
Last Name: 
Gai
Official Title: 
Edmund J. and Louise W. Kahn Endowed Term Professor of Chemistry
Contact Information
Office Location: 
254N
Email: 
gai@sas.upenn.edu
Phone: 
(215) 573-6256
Education: 

 

  • B.S. Peking University (1983)
  • M.S. Peking University (1986)
  • Ph.D. Iowa State University (1994)
  • Lecturer, Tsinghua University (1986-89)
  • Postdoctoral Research Associate, Harvard University (1994-97)
  • Director’s Postdoctoral Fellow, Los Alamos National Laboratory (1997-99)
Research Interests: 

 

The focus of our research is to study how proteins fold from random or quasi-random coils to their biologically functional conformations. We are particularly interested in the kinetic aspects of the folding mechanisms. Novel laser spectroscopic methods are being used and developed to study the early folding events and folding intermediates.

Fast events in protein folding

 

Understanding how folding proceeds at early time is apparently essential to the elucidation of the entire folding mechanism. To access and characterize the early folding events requires a fast initiation method and a probe that has structural specificity. Our general approach is to use novel laser-induced temperature-jump and fast-mixing techniques to initiate refolding/unfolding on nanosecond or microsecond timescales, and use time-resolved infrared and fluorescence spectroscopies to probe the subsequent folding dynamics and structural ordering along the folding/unfolding pathways. This approach provides not only fast time resolution, but also the necessary structural sensitivity, since both infrared and fluorescence are well-established conformation probes. Recent works involve the study of the helix-coil transition, helix-helix interaction, and ß-sheet formation. 

 

 

 

Single-molecule study of protein conformation dynamics

Recently, a new view of the kinetics of protein folding has emerged based on the new conceptual framework of statistical mechanical models, replacing the pathway concept with the broader notion of rugged energy landscapes. The heterogeneity in folding kinetics therefore can be realized as a result of the motions of an ensemble of protein conformations on the rugged energy hypersurface that is biased towards the native state, analogous to parallel diffusion-like processes. Studying folding dynamics statistically using single-molecule techniques will provide unique information regarding a protein's folding energy landscape, which may not be obtained by conventional ensemble studies since the conventional measurements of molecular dynamics in the condensed phase represent only averages over large numbers of molecules and events. Currently, confocal fluorescence spectroscopy and microscopy are being used to study protein spontaneous fluctuation and folding dynamics at single-molecule level. 

Selected Publications: 

 

S. Mukherjee, P. Chowdhury and F. Gai, “Infrared study of the effect of hydration on the amide I band and aggregation properties of helical peptides,” J. Phys. Chem. B 2007, 111, 4596.

 

Y. Xu, P. Purkayastha, and F. Gai, “Nanosecond folding dynamics of a three-stranded beta-sheet,” J. Am. Chem. Soc. 2006, 128, 15836.

 

M. R. Bunagan, L. Cristian, W. F. DeGrado, and F. Gai, “Truncation of a cross-linked GCN4-p1 coiled-coil leads to ultrafast folding,” Biochemistry 2006, 45, 10981.

 

D. Du, and F. Gai, “Understanding the folding mechanism of alpha-helical hairpin. Biochemistry 2006, 45, 13131.

 

M. J. Tucker, J. Tang, and F. Gai, “Probing the kinetics of membrane-mediated helix folding,” J. Phys. Chem. B 2006, 110, 8105.

 

M. J. Tucker, R. Oyola, and F. Gai, “Conformational distribution of a 14-residue peptide in solution: a FRET study,” J. Phys. Chem. B 2005, 109, 4788.

 

D. G. Du, Y. J. Zhu, C-Y. Huang, and F. Gai, “Understanding the key factors that control the rate of -hairpin folding,” Proc. Natl. Acad. Sci. USA 2004, 101, 15915.

 

Y. J. Zhu, D. O. V. Alonso, K. Maki, C-Y Huang, S. J. Lahr, V. Daggett, H. Roder, W. F. DeGrado, and F. Gai, “Ultrafast folding of alpha3D, a de novo designed three-helix bundle protein,” Proc. Natl. Acad. Sci. USA 2003, 100, 15486.

 

Z. Getahun, C-Y. Huang, T. Wang, B. D. León, W. F. DeGrado, and F. Gai, “Using nitrile-derivatized amino acids as infrared probes of local environment,” J. Am. Chem. Soc. 2003, 125, 405.

 

C.-Y. Huang, Z. Getahun, Y. J. Zhu, J. W. Klemke, W. F. DeGrado, and F. Gai, “Helix formation via conformation diffusion search,” Proc. Natl. Acad. Sci. USA 2002, 99, 2788.

Department of Chemistry

231 S. 34 Street, Philadelphia, PA 19104-6323

215.898.8317 voice | 215.573.2112 fax | web@chem.upenn.edu

Syndicate content